Topological and singular soliton solution to Kundu-Eckhaus equation with extended Kudryashov's method

被引:54
|
作者
El-Borai, M. M. [1 ]
El-Owaidy, H. M. [2 ]
Ahmed, Hamdy M. [3 ]
Arnous, Ahmed H. [3 ]
Moshokoa, Seithuti [4 ]
Biswas, Anjan [4 ,5 ]
Belic, Milivoj [6 ]
机构
[1] Univ Alexandria, Fac Sci, Dept Math, Qesm Bab Sharqi, Alexandria Gove, Egypt
[2] Al Azhar Univ, Nasr City, Cairo Governora, Egypt
[3] Higher Inst Engn, Dept Engn Math & Phys, 15th Of May City, Cairo Governora, Egypt
[4] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[5] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 80203, Saudi Arabia
[6] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2017年 / 128卷
关键词
Solitons; Eckhaus equation; Extended Kudryashov method; NONLINEAR EVOLUTION-EQUATIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; TRAVELING-WAVE SOLUTIONS; TANH-FUNCTION METHOD; OPTICAL SOLITONS; (G'/G)-EXPANSION METHOD; NANO-FIBERS;
D O I
10.1016/j.ijleo.2016.10.011
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we apply the extended Kudryashov method to a nonlinear Schrodinger type equation called the Kundu-Eckhaus equation or the Eckhaus equation which was independently introduced by Wiktor Eckhaus and by Anjan Kundu in 1984-1985 to model the propagation of waves in dispersive media. The proposed method is direct, effective and takes full advantages of the Bernoulli and Riccati equations to construct new exact solutions of that model and can be extended to many nonlinear evolution equations in mathematical physics. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:57 / 62
页数:6
相关论文
共 50 条
  • [1] The dressing method and dynamics of soliton solutions for the Kundu-Eckhaus equation
    Chai, Xuedong
    Zhang, Yufeng
    NONLINEAR DYNAMICS, 2023, 111 (06) : 5655 - 5669
  • [2] Bright and dark soliton solutions for the complex Kundu-Eckhaus equation
    Bekir, Ahmet
    Zahran, Emad H. M.
    OPTIK, 2020, 223
  • [3] Abundant soliton solutions for the Kundu-Eckhaus equation via tan(φ(ξ))-expansion method
    Manafian, Jalil
    Lakestani, Mehrdad
    OPTIK, 2016, 127 (14): : 5543 - 5551
  • [4] Dark and singular solitons of Kundu-Eckhaus equation for optical fibers
    Vega-Guzman, Jose
    Mahmood, M. F.
    Milovic, Daniela
    Zerrad, Essaid
    Biswas, Anjan
    Belic, Milivoj
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2015, 9 (11-12): : 1353 - 1355
  • [5] Optical soliton perturbation with full nonlinearity for Kundu-Eckhaus equation by modified simple equation method
    Biswas, Anjan
    Yildirim, Yakup
    Yasar, Emrullah
    Triki, Houria
    Alshomrani, Ali Saleh
    Ullah, Malik Zaka
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    OPTIK, 2018, 157 : 1376 - 1380
  • [6] Optical soliton perturbation with full nonlinearity for Kundu-Eckhaus equation by extended trial function scheme
    Biswas, Anjan
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    OPTIK, 2018, 160 : 17 - 23
  • [7] Soliton collisions for the Kundu-Eckhaus equation with variable coefficients in an optical fiber
    Xie, Xi-Yang
    Yan, Ze-Hui
    APPLIED MATHEMATICS LETTERS, 2018, 80 : 48 - 53
  • [8] Dark and singular optical solitons with Kundu-Eckhaus equation by extended trial equation method and extended G′/G-expansion scheme
    Ekici, Mehmet
    Mirzazadeh, Mohammad
    Sonmezoglu, Abdullah
    Zhou, Qin
    Moshokoa, Seithuti P.
    Biswas, Anjan
    Belic, Milivoj
    OPTIK, 2016, 127 (22): : 10490 - 10497
  • [9] Darboux transformation and exact solution to the nonlocal Kundu-Eckhaus equation
    Yang, Yingmin
    Xia, Tiecheng
    Liu, Tongshuai
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [10] The Darboux transformation of the Kundu-Eckhaus equation
    Qiu, Deqin
    He, Jingsong
    Zhang, Yongshuai
    Porsezian, K.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2180):