A BOUND ON THE ORDER OF NON-ABELIAN TENSOR SQUARE OF A PRIME-POWER GROUP

被引:5
|
作者
Jafari, S. H. [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Mashhad Branch, Mashhad, Iran
关键词
Non-abelian tensor square; PRODUCTS;
D O I
10.1080/00927872.2010.532845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article improves on an upper bound for the order of the non-abelian tensor square of a finite p-group G given in [3]. In particular, applying this for finite p-groups of order p(n) with factor group G/G' of order p(m), the bound p(nm) attains if and only if G is elementary abelian of rank n, quaternion group of order 8, or extra special p-group of order p(3) with odd exponent p.
引用
收藏
页码:528 / 530
页数:3
相关论文
共 50 条
  • [21] GROUPS OF PRIME-POWER ORDER HAVING AN ABELIAN CENTRALIZER OF TYPE (R, 1)
    BLACKBURN, N
    MONATSHEFTE FUR MATHEMATIK, 1985, 99 (01): : 1 - 18
  • [22] On the triple tensor product of prime-power groups
    Jafari, S. Hadi
    Hadizadeh, Halimeh
    JOURNAL OF GROUP THEORY, 2020, 23 (05) : 879 - 892
  • [23] On the derived length of finite, graded Lie rings with prime-power, order, and groups with prime-power order
    Evans-Riley, S
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 64 (01) : 171 - 172
  • [24] Non-Abelian tensor square and related constructions of p-groups
    Bastos, R.
    de Melo, E.
    Goncalves, N.
    Nunes, R.
    ARCHIV DER MATHEMATIK, 2020, 114 (05) : 481 - 490
  • [25] The non-Abelian tensor multiplet
    Gustavsson, Andreas
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [26] THE FIXITY OF GROUPS OF PRIME-POWER ORDER
    NEWMAN, MF
    OBRIEN, EA
    SHALEV, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 : 225 - 231
  • [27] Cayley Graph for the Non-Abelian Tensor Square of Some Finite Groups
    Zulkarnain, A.
    Sarmin, N. H.
    Hassim, H. I. Mat
    Erfanian, A.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2020, 44 (06) : 867 - 873
  • [28] Descriptions of groups of prime-power order
    Newman, MF
    Nickel, W
    Niemeyer, AC
    JOURNAL OF SYMBOLIC COMPUTATION, 1998, 25 (05) : 665 - 682
  • [29] Non-Abelian tensor square and related constructions of p-groups
    R. Bastos
    E. de Melo
    N. Gonçalves
    R. Nunes
    Archiv der Mathematik, 2020, 114 : 481 - 490
  • [30] CHARACTERIZATION OF FINITE p-GROUPS BY THEIR NON-ABELIAN TENSOR SQUARE
    Jafari, S. H.
    Saeedi, F.
    Khamseh, E.
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (05) : 1954 - 1963