LEARNING TOP DOWN SCENE CONTEXT FOR VISUAL ATTENTION MODELING IN NATURAL IMAGES

被引:0
|
作者
Karthikeyan, S. [1 ]
Jagadeesh, Vignesh [1 ]
Manjunath, B. S. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
Scene Context; Visual attention modeling; Eye Tracking;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Top down image semantics play a major role in predicting where people look in images. Present state-of-the-art approaches to model human visual attention incorporate high level object detections signifying top down image semantics in a separate channel along with other bottom up saliency channels. However, multiple objects in a scene are competing to attract our attention and this interaction is ignored in current models. To overcome this limitation, we propose a novel object context based visual attention model which incorporates the co-occurrence of multiple objects in a scene for visual attention modeling. The proposed regression based algorithm uses several high level object detectors for faces, people, cars, text and understands how their joint presence affects visual attention. Experimental results on the MIT eye tracking dataset demonstrates that the proposed method outperforms other state-of-the-art visual attention models.
引用
收藏
页码:211 / 215
页数:5
相关论文
共 50 条
  • [21] Generating Synthetic Images for Visual Attention Modeling
    Berga, David
    Otazu, Xavier
    Fdez-Vidal, Xose R.
    Leboran, Victor
    Pardo, Xose M.
    PERCEPTION, 2019, 48 : 99 - 99
  • [22] What/Where to Look Next? Modeling Top-Down Visual Attention in Complex Interactive Environments
    Borji, Ali
    Sihite, Dicky N.
    Itti, Laurent
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2014, 44 (05): : 523 - 538
  • [23] Spatial context and top-down strategies in visual search
    Lleras, A
    Von Mühlenen, A
    SPATIAL VISION, 2004, 17 (4-5): : 465 - 482
  • [24] Perceptual learning to reduce sensory eye dominance beyond the focus of top-down visual attention
    Xu, Jingping P.
    He, Zijiang J.
    Ooi, Teng Leng
    VISION RESEARCH, 2012, 61 : 39 - 47
  • [25] Text Detection in Natural Scene Images Leveraging Context Information
    Wang, Runmin
    Sang, Nong
    Gao, Changxin
    Kuang, Xiaoqin
    Xiang, Jun
    PATTERN RECOGNITION (CCPR 2014), PT II, 2014, 484 : 444 - 454
  • [26] Integrated effects of top-down attention and statistical learning during visual search: An EEG study
    Carola Dolci
    C. Nico Boehler
    Elisa Santandrea
    Anneleen Dewulf
    Suliann Ben-Hamed
    Emiliano Macaluso
    Leonardo Chelazzi
    Einat Rashal
    Attention, Perception, & Psychophysics, 2023, 85 : 1819 - 1833
  • [27] Integrated effects of top-down attention and statistical learning during visual search: An EEG study
    Dolci, Carola
    Boehler, C. Nico
    Santandrea, Elisa
    Dewulf, Anneleen
    Ben-Hamed, Suliann
    Macaluso, Emiliano
    Chelazzi, Leonardo
    Rashal, Einat
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2023, 85 (06) : 1819 - 1833
  • [28] Top-Down Contributions to Attention Shifting and Disengagement: A Template Model of Visual Attention
    Yamaguchi, Motonori
    Valji, Ashvanti
    Wolohan, Felicity D. A.
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-GENERAL, 2018, 147 (06) : 859 - 887
  • [29] MULTI-LAYER LINEAR MODEL FOR TOP-DOWN MODULATION OF VISUAL ATTENTION IN NATURAL EGOCENTRIC VISION
    Ma, Keng-Teck
    Li, Liyuan
    Dai, Peilun
    Lim, Joo-Hwee
    Shen, Chengyao
    Zhao, Qi
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3470 - 3474
  • [30] Coherent Visual Storytelling via Parallel Top-Down Visual and Topic Attention
    Gu, Jinjing
    Wang, Hanli
    Fan, Ruichao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (01) : 257 - 268