Mitochondrial GRK2 is a Novel Regulator of Cardiac Energetics

被引:1
|
作者
Ferrero, Kimberly M.
Chuprun, Kurt
Pfleger, Jessica
Tilley, Douglas
Gao, Erhe
Koch, Walter J.
机构
[1] Lewis Katz School of Medicine at Temple University, PA, Philadelphia
[2] Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, PA, Philadelphia
[3] Fralin Biomedical Research Institute, Virginia Tech University, VA, Roanoke
[4] Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, PA, Philadelphia
来源
FASEB JOURNAL | 2022年 / 36卷
关键词
D O I
10.1096/fasebj.2022.36.S1.R2991
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
G protein-coupled receptor (GPCR) kinase 2 (GRK2) is highly expressed in the heart, where during injury or heart failure (HF), both its levels and activity increase. GRK2 is canonically studied in the context of GPCR phosphorylation; however, noncanonical activities of GRK2 have emerged and it is now appreciated that GRK2 has a large non-GPCR interactome. For example, in cardiac myocytes, GRK2 translocates from the cytosol to mitochondria (mtGRK2) following oxidative stress or ischemia injury, and this pool of mtGRK2 is associated with negative effects on metabolism and also induces myocyte cell death. However, the mechanisms by which mtGRK2 contributes to cardiac dysfunction and HF are not fully understood. We hypothesized that mtGRK2 could have novel substrates and phosphorylate proteins involved in mitochondrial bioenergetics, thus contributing to our previously established post-injury phenotype. Stress-induced mitochondrial translocation of cytosolic GRK2 was validated in cell and animal models and the mtGRK2 interactome was identified using liquid chromatography-mass spectroscopy (LCMS). Proteomics analysis identified mtGRK2 interacting proteins which were involved in mitochondrial dysfunction, bioenergetics, and OXPHOS, particularly complexes I, II, IV and V of the electron transport chain (ETC). Specifically, mtGRK2 interactions with Complex V (ATP synthase) subunits were particularly increased following stress. We established that mtGRK2 phosphorylates ATP synthase on the F1 catalytic barrel, which is critical for oxidative phosphorylation and ATP production. We have also determined that alterations in either the levels or activity of GRK2 appear to alter ATP synthase enzymatic activity in vitro. Excitingly, in vivo data suggest that reducing levels of GRK2 in a mouse model of myocardial infarction prevents the post-injury reduction in ATP synthesis. We are currently assessing the ability of the SSRI drug paroxetine, a GRK2 inhibitor, to preserve mitochondrial bioenergetics in a transgenic GRK2 mouse model. Thus, phosphorylation of the ATP synthesis machinery by mtGRK2 may contribute to the impaired mitochondrial phenotype observed in injured or failing heartssuch as reduced fatty acid metabolism and substrate utilization. These data uncover a druggable, novel target for rescuing cardiac function in patients with injured and/or failing hearts. © FASEB.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Novel mechanisms for regulation of GRK2 activity:: Inhibition of Grk2 via preferential association with PKC-phosphorylated rkip (Raf Kinase Inhibitory Protein) and stimulation of GRK2 via tyrosine phosphorylation of GRK2 by C-src
    Huang, Jiean
    Mahavadi, Sunila
    Murthy, Karnam S.
    GASTROENTEROLOGY, 2006, 130 (04) : A223 - A223
  • [22] Cardiac GRK2 and the Communicative Axis Between Heart and Fat
    Hill, Bradford G.
    JACC-BASIC TO TRANSLATIONAL SCIENCE, 2022, 7 (06): : 580 - 581
  • [23] GRK2 and GRK5 as therapeutic targets and their role in maladaptive and pathological cardiac hypertrophy
    Lieu, Melissa
    Koch, Walter J.
    EXPERT OPINION ON THERAPEUTIC TARGETS, 2019, 23 (03) : 201 - 214
  • [24] GRK2 is a novel early marker of cardiotoxicity in response to doxorubicin
    Fiordelisi, A.
    Gambardella, J.
    Ciccarelli, M.
    Trimarco, B.
    Iaccarino, G.
    Sorriento, D.
    CARDIOVASCULAR RESEARCH, 2018, 114 : S119 - S119
  • [25] GRK2 is a novel early marker of cardiotoxicity in response to doxorubicin
    Gambardella, J.
    Fiordelisi, A.
    De Rosa, M.
    Ciccarelli, M.
    Trimarco, B.
    Iaccarino, G.
    Sorriento, D.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2018, 120 : 33 - 33
  • [26] GRK2 Activation By Receptors
    Sterne-Marr, Rachel
    Leahey, Alex
    Amie, Sarah M.
    Donnelly, Ryan
    Lopez, Thomas S.
    Tesmer, John J.
    FASEB JOURNAL, 2010, 24
  • [27] GRK2 is a novel modulator of the MALT1 protease
    Cheng, J.
    Kang, H.
    Parameswaran, N.
    Delekta, P.
    Baens, M.
    Zhang, M.
    Thome, M.
    Lucas, P. C.
    McAllister-Lucas, L. M.
    BRITISH JOURNAL OF HAEMATOLOGY, 2015, 171 : 39 - 40
  • [28] TARGETING GPCR GRK2 SIGNALING AS A NOVEL MODULATOR OF OSTEOARTHRITIS
    Karuppagounder, V.
    Pinamont, W.
    Yoshioka, N.
    Ahmad, A.
    Elbarbary, R.
    Kamal, F.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 : S92 - S92
  • [29] GRK2 as a novel gene therapy target in heart failure
    Rengo, Giuseppe
    Lymperopoulos, Anastasios
    Leosco, Dario
    Koch, Walter J.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2011, 50 (05) : 785 - 792
  • [30] GRK2 inhibition by calmodulin
    Brockmann, J
    Krasel, C
    Dees, C
    Lohse, MJ
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2003, 367 : R58 - R58