Long-read sequencing of the zebrafish genome reorganizes genomic architecture

被引:13
|
作者
Chernyavskaya, Yelena [1 ,2 ]
Zhang, Xiaofei [2 ,3 ]
Liu, Jinze [4 ]
Blackburn, Jessica [1 ,2 ]
机构
[1] Univ Kentucky, Dept Cellular & Mol Biochem, Lexington, KY 40536 USA
[2] Univ Kentucky, Markey Canc Ctr, Lexington, KY 40536 USA
[3] Univ Kentucky, Dept Comp Sci, Lexington, KY 40536 USA
[4] Virginia Commonwealth Univ, Dept Biostat, Richmond, VA 23284 USA
基金
美国国家卫生研究院;
关键词
Nanopore; MinION; Danio rerio; Reference assembly; Transposon; TRANSPOSABLE ELEMENTS; DOMAINS; SYSTEM;
D O I
10.1186/s12864-022-08349-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Nanopore sequencing technology has revolutionized the field of genome biology with its ability to generate extra-long reads that can resolve regions of the genome that were previously inaccessible to short-read sequencing platforms. Over 50% of the zebrafish genome consists of difficult to map, highly repetitive, low complexity elements that pose inherent problems for short-read sequencers and assemblers. Results We used long-read nanopore sequencing to generate a de novo assembly of the zebrafish genome and compared our assembly to the current reference genome, GRCz11. The new assembly identified 1697 novel insertions and deletions over one kilobase in length and placed 106 previously unlocalized scaffolds. We also discovered additional sites of retrotransposon integration previously unreported in GRCz11 and observed the expression of these transposable elements in adult zebrafish under physiologic conditions, implying they have active mobility in the zebrafish genome and contribute to the ever-changing genomic landscape. Conclusions We used nanopore sequencing to improve upon and resolve the issues plaguing the current zebrafish reference assembly, GRCz11. Zebrafish is a prominent model of human disease, and our corrected assembly will be useful for studies relying on interspecies comparisons and precise linkage of genetic events to disease phenotypes.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Improved contiguity of the threespine stickleback genome using long-read sequencing
    Nath, Shivangi
    Shaw, Daniel E.
    White, Michael A.
    G3-GENES GENOMES GENETICS, 2021, 11 (02):
  • [32] Genomics in the long-read sequencing era
    van Dijk, Erwin L.
    Naquin, Delphine
    Gorrichon, Kevin
    Jaszczyszyn, Yan
    Ouazahrou, Rania
    Thermes, Claude
    Hernandez, Celine
    TRENDS IN GENETICS, 2023, 39 (09) : 649 - 671
  • [33] Long-read sequencing for brain tumors
    Shelton, William J.
    Zandpazandi, Sara
    Nix, J. Stephen
    Gokden, Murat
    Bauer, Michael
    Ryan, Katie Rose
    Wardell, Christopher P.
    Vaske, Olena Morozova
    Rodriguez, Analiz
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [34] Long-read sequencing in human genetics
    Kraft, Florian
    Kurth, Ingo
    MEDIZINISCHE GENETIK, 2019, 31 (02) : 198 - 204
  • [35] Method of the year: long-read sequencing
    Marx, Vivien
    NATURE METHODS, 2023, 20 (01) : 6 - 11
  • [36] Reimagining Long-Read DNA Sequencing
    不详
    CHEMICAL ENGINEERING PROGRESS, 2017, 113 (10) : 28 - 28
  • [37] Long-read sequencing in fungal identification
    Hoang, Minh Thuy Vi
    Irinyi, Laszlo
    Meyer, Wieland
    MICROBIOLOGY AUSTRALIA, 2022, 43 (01) : 14 - 18
  • [38] Transcriptomics in the era of long-read sequencing
    Monzo, Carolina
    Liu, Tianyuan
    Conesa, Ana
    NATURE REVIEWS GENETICS, 2025,
  • [39] Long-read sequencing goes clinical
    Neveling, K.
    Derks, R.
    Kwint, M.
    van de Vorst, M.
    Gardeitchik, T.
    Nelen, M.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 516 - 516
  • [40] Method of the year: long-read sequencing
    Vivien Marx
    Nature Methods, 2023, 20 : 6 - 11