Polynomial energy decay rate and strong stability of Kirchhoff plates with non-compact resolvent

被引:15
|
作者
Rao, BP
Wehbe, A
机构
[1] Univ Louis Pasteur Strasbourg, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] Amer Univ Beirut, CAMS, Beirut, Lebanon
关键词
Kirchhoff plate; polynomial decay rate; strong stability; non-compactness;
D O I
10.1007/s00028-005-0171-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a direct approach, we establish the polynomial energy decay rate for smooth solutions of the equation of Kirchhoff plate. Consequently, we obtain the strong stability in the absence of compactness of the resolvent of the infinitesimal operator.
引用
收藏
页码:137 / 152
页数:16
相关论文
共 50 条
  • [41] Pointed Gromov-Hausdorff Topological Stability for Non-compact Metric Spaces
    Luis Eduardo Osorio Acevedo
    Henry Mauricio Sánchez
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [42] Dynamics of extensible beams with nonlinear non-compact energy-level damping
    Tavares, E. H. Gomes
    Silva, M. A. Jorge
    Lasiecka, I.
    Narciso, Vando
    MATHEMATISCHE ANNALEN, 2024, 390 (02) : 1821 - 1862
  • [43] Energy measurements and equivalence of boundary data for inverse problems on non-compact manifolds
    Katchalov, A
    Kurylev, Y
    Lassas, M
    GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL, 2004, 137 : 183 - 213
  • [44] Polynomial Energy Decay Rate for the Wave Equation with Kinetic Boundary Condition
    Laoubi, K.
    Seba, D.
    ACTA APPLICANDAE MATHEMATICAE, 2024, 191 (01)
  • [45] Exponential energy decay of solutions for a system of viscoelastic wave equations of Kirchhoff type with strong damping
    Li, Gang
    Hong, Linghui
    Liu, Wenjun
    APPLICABLE ANALYSIS, 2013, 92 (05) : 1046 - 1062
  • [46] Navier-Stokes equations on non-compact Einstein manifolds: Stability implies periodicity
    Nguyen, Thieu Huy
    Vu, Thi Ngoc Ha
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [47] Stability of the Kahler-Ricci flow at complete non-compact Kahler Einstein metrics
    Chau, A
    GEOMETRIC EVOLUTION EQUATIONS, 2005, 367 : 43 - 62
  • [48] Periodic and almost periodic evolution flows and their stability on non-compact Einstein manifolds and applications
    Nguyen, Thieu Huy
    Nguyen, Thi Van
    Pham, Truong Xuan
    Vu, Thi Ngoc Ha
    ANNALES POLONICI MATHEMATICI, 2022, : 147 - 174
  • [50] ELIMINATION OF NUMERICAL DAMPING IN THE STABILITY ANALYSIS OF NON-COMPACT THERMOACOUSTIC SYSTEMS WITH LINEARIZED EULER EQUATIONS
    Hofmeister, Thomas
    Hummel, Tobias
    Berger, Frederik
    Klarmann, Noah
    Sattelmayer, Thomas
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 4C, 2020,