Automatic target recognition using deep convolutional neural networks

被引:1
|
作者
Nasrabadi, Nasser M. [1 ]
Kazemi, Hadi [1 ]
Iranmanesh, Mehdi [1 ]
机构
[1] West Virginia Univ, Morgantown, WV 26506 USA
来源
关键词
Automatic Target Recognition (ATR); target detector; deep learning; Deep Convolutional Neural Network (DCNN); FLIR imagery; IMAGERY; MODEL; CLASSIFICATION; TRACKING;
D O I
10.1117/12.2304643
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a new Automatic Target Recognition (ATR) system, based on Deep Convolutional Neural Network (DCNN), to detect the targets in Forward Looking Infrared (FLIR) scenes and recognize their classes. In our proposed ATR framework, a fully convolutional network (FCN) is trained to map the input FLIR imagery data to a fixed stride correspondingly-sized target score map. The potential targets are identified by applying a threshold on the target score map. Finally, corresponding regions centered at these target points are fed to a DCNN to classify them into different target types while at the same time rejecting the false alarms. The proposed architecture achieves a significantly better performance in comparison with that of the state-of-the-art methods on two large FUR image databases.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Handwritten Hangul recognition using deep convolutional neural networks
    Kim, In-Jung
    Xie, Xiaohui
    INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2015, 18 (01) : 1 - 13
  • [22] Facial Expression Recognition Using Deep Convolutional Neural Networks
    Dinh Viet Sang
    Nguyen Van Dat
    Do Phan Thuan
    2017 9TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2017), 2017, : 130 - 135
  • [23] Forest Species Recognition using Deep Convolutional Neural Networks
    Hafemann, Luiz G.
    Oliveira, Luiz S.
    Cavalin, Paulo
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1103 - 1107
  • [24] DeepSAR-Net: Deep Convolutional Neural Networks for SAR Target Recognition
    Li, Yang
    Wang, Jiabao
    Xu, Yulong
    Li, Hang
    Miao, Zhuang
    Zhang, Yafei
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 740 - 743
  • [25] Robustness of automatic target recognition using noniterative neural networks
    Hu, CLJ
    Automatic Target Recogniton XV, 2005, 5807 : 431 - 434
  • [26] Automatic target recognition using vector quantization and neural networks
    Chan, LA
    Nasrabadi, NM
    OPTICAL ENGINEERING, 1999, 38 (12) : 2147 - 2161
  • [27] Automatic Recognition of Electrical Grid Elements using Convolutional Neural Networks
    Silva, L. A. Z.
    Vidal, V. F.
    Silva, M. F.
    Santos, M. F.
    Carvalho, A. L.
    Cerqueira, A. S.
    Honorio, L. M.
    Rezende, H. B.
    Ribeiro, J. M. S.
    Pancoti, A. A. N.
    Regina, B. A.
    2018 22ND INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2018, : 822 - 826
  • [28] Automatic Facial Expression Recognition System Using Convolutional Neural Networks
    Hung Ngoc Do
    Kien Trang
    Bao Quoc Vuong
    Van-Su Tran
    Linh Mai
    Minh-Thanh Vo
    Mai Hoang Nguyen
    7TH INTERNATIONAL CONFERENCE ON THE DEVELOPMENT OF BIOMEDICAL ENGINEERING IN VIETNAM (BME7): TRANSLATIONAL HEALTH SCIENCE AND TECHNOLOGY FOR DEVELOPING COUNTRIES, 2020, 69 : 473 - 476
  • [29] Comparative Analysis of Convolutional Neural Networks and Support Vector Machines for Automatic Target Recognition
    Gorovyi, Ievgen M.
    Sharapov, Dmytro S.
    2017 5TH IEEE MICROWAVES, RADAR AND REMOTE SENSING SYMPOSIUM (MRRS), 2017, : 63 - 66
  • [30] Automatic driver distraction detection using deep convolutional neural networks
    Hossain, Md. Uzzol
    Rahman, Md. Ataur
    Islam, Md. Manowarul
    Akhter, Arnisha
    Uddin, Md. Ashraf
    Paul, Bikash Kumar
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2022, 14