Mean temperature profiles in turbulent thermal convection

被引:23
|
作者
Shishkina, Olga [1 ]
Horn, Susanne [2 ]
Emran, Mohammad S. [1 ]
Ching, Emily S. C. [3 ]
机构
[1] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
[2] Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA 90095 USA
[3] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
来源
PHYSICAL REVIEW FLUIDS | 2017年 / 2卷 / 11期
关键词
RAYLEIGH-BENARD CONVECTION; BOUNDARY-LAYER; PRANDTL-NUMBER; HEAT-TRANSPORT;
D O I
10.1103/PhysRevFluids.2.113502
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
To predict the mean temperature profiles in turbulent thermal convection, the thermal boundary layer (BL) equation including the effects of fluctuations has to be solved. In Shishkina et al. [Phys. Rev. Lett. 114, 114302 (2015)], the thermal BL equation with the fluctuations taken into account as an eddy thermal diffusivity has been solved for large Prandtl-number fluids for which the eddy thermal diffusivity and the velocity field can be approximated, respectively, as a cubic and a linear function of the distance from the plate. In the present work, we make use of the idea of Prandtl's mixing length model and relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal BL equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters for fluids with a general Prandtl number. With a proper choice of the parameters, our predictions of the temperature profiles are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers from 0.01 to 2547.9 and Rayleigh numbers from 10(7) to 10(9).
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Velocity and temperature cross-scaling in turbulent thermal convection
    Ching, ESC
    Chui, KW
    Shang, XD
    Qiu, XL
    Tong, P
    Xia, KQ
    JOURNAL OF TURBULENCE, 2004, 5
  • [22] Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection
    Liot, O.
    Seychelles, F.
    Zonta, F.
    Chibbaro, S.
    Coudarchet, T.
    Gasteuil, Y.
    Pinton, J. -F.
    Salort, J.
    Chilla, F.
    JOURNAL OF FLUID MECHANICS, 2016, 794 : 655 - 675
  • [23] Mean velocity and temperature profiles in a sheared diabatic turbulent boundary layer
    Li, Dan
    Katul, Gabriel G.
    Bou-Zeid, Elie
    PHYSICS OF FLUIDS, 2012, 24 (10)
  • [24] Spatial variations of the mean and statistical quantities in the thermal boundary layers of turbulent convection
    J. Wang
    K.-Q. Xia
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 32 : 127 - 136
  • [25] Spatial variations of the mean and statistical quantities in the thermal boundary layers of turbulent convection
    Wang, J
    Xia, KQ
    EUROPEAN PHYSICAL JOURNAL B, 2003, 32 (01): : 127 - 136
  • [26] Generation of mean flows in turbulent convection
    Hartlep, T
    Tilgner, A
    Progress in Turbulence, 2005, 101 : 177 - 180
  • [27] Mean flow precession and temperature probability density functions in turbulent rotating convection
    Hart, JE
    Kittelman, S
    Ohlsen, DR
    PHYSICS OF FLUIDS, 2002, 14 (03) : 955 - 962
  • [28] TEMPERATURE PROFILES IN LIQUID METALS AND EFFECT OF SUPERIMPOSED FREE CONVECTION IN TURBULENT FLOW
    BUHR, HO
    CARR, AD
    BALZHISER, RE
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1968, 11 (04) : 641 - +
  • [29] Supergravitational turbulent thermal convection
    Jiang, Hechuan
    Zhu, Xiaojue
    Wang, Dongpu
    Huisman, Sander G.
    Sun, Chao
    SCIENCE ADVANCES, 2020, 6 (40):
  • [30] THERMAL STRUCTURE OF TURBULENT CONVECTION
    CARROLL, JJ
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1976, 33 (04) : 642 - 659