Computer-assisted image analysis of histopathological breast cancer images using step-DTOCS

被引:0
|
作者
Ikonen, Tiia [1 ]
Niska, Harri [1 ]
Braithwaite, Billy [1 ]
Pollanen, Irene [1 ]
Haataja, Keijo [1 ]
Toivanen, Pekka [1 ]
Tolonen, Teemu [2 ]
Isola, Jorma [2 ]
机构
[1] Univ Eastern Finland, Sch Comp Kuopio Campus, POB 1627, FI-70211 Kuopio, Finland
[2] Univ Tampere, Inst Biomed Technol, FI-33520 Tampere, Finland
关键词
breast cancer; feature extraction; classification; DTOCS; neural network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the epidemiology and morphology questions of breast cancer with special focus on different cell features created by lesions. In addition, we provide an insight into feature extraction and classification schemes in the image analysis pipeline. Based on our conducted research work, a novel feature extraction approach, a modification of Distance Transform on Curved Space (DTOCS), is proposed for analysis and classification of breast cancer images. The first experimental results suggest that the Step-DTOCS-based MLP-network is capable of discriminating different cell structures in a respectable way. The obtained results are presented and analyzed, and further research ideas are discussed.
引用
收藏
页码:187 / 192
页数:6
相关论文
共 50 条
  • [21] CAN ORAL SQUAMOUS CANCER PROGNOSIS BE PREDICTED USING COMPUTER-ASSISTED MORPHOMETRIC IMAGE-ANALYSIS
    GUTHUA, SW
    SOUTHERN, JF
    DOMANOWSKI, GF
    PETO, CA
    DONOFF, RB
    LABORATORY INVESTIGATION, 1989, 60 (01) : A36 - A36
  • [22] Computer-assisted digital image analysis of human islets
    Niclauss, Nadja
    Armanet, Mathieu
    Morel, Philippe
    Sgroi, Antonino
    Baertschiger, Reto
    Wojtusciszyn, Anne
    Berney, Thierry
    Bosco, Domenico
    XENOTRANSPLANTATION, 2007, 14 (05) : 500 - 500
  • [23] COMPUTER-ASSISTED IMAGE-ANALYSIS IN BIOLOGICAL SCIENCES
    HADER, DP
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-PLANT SCIENCES, 1988, 98 (04): : 227 - 249
  • [24] Morphometric analysis of pancreatic carcinoma by computer-assisted image analysis
    Wolnicka, A
    Foryst, A
    Madeja, Z
    Tomaszewska, R
    Walter, R
    Stachura, J
    Korohoda, W
    FOLIA BIOLOGICA-KRAKOW, 1998, 46 (1-2): : 7 - 15
  • [25] Computer-Aided Classification of Breast Cancer Histopathological Images
    Aksebzeci, Bekir Hakan
    Kayaalti, Omer
    2017 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2017,
  • [26] COMPUTER-ASSISTED IMAGE-ANALYSIS IN QUANTITATIVE FRACTOGRAPHY
    RUSS, JC
    JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 1990, 42 (10): : 16 - 19
  • [27] Comparative Analysis of Segmentation Techniques using Histopathological Images of Breast Cancer
    Kaushal, Chetna
    Koundal, Deepika
    Singla, Anshu
    PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2019), 2019, : 261 - 266
  • [28] The region-of-interest size impacts on Ki67 quantification by computer-assisted image analysis in breast cancer
    Christgen, Matthias
    von Ahsen, Sabrina
    Christgen, Henriette
    Laenger, Florian
    Kreipe, Hans
    HUMAN PATHOLOGY, 2015, 46 (09) : 1341 - 1349
  • [29] Estrogen and progesterone receptors in breast cancer: Comparison between enzyme immunoassay and computer-assisted image analysis of immunocytochemical assay
    Cavaliere, A
    Bucciarelli, E
    Sidoni, A
    Bianchi, G
    Pietropaoli, N
    Ludovini, V
    Vitali, R
    CYTOMETRY, 1996, 26 (03): : 204 - 208
  • [30] HER2 assessment in breast cancer. Further progress 1: computer-assisted image analysis by VIAS™
    Di Palma, S.
    Ping, B.
    Faulkes, C.
    Lavender, L.
    VIRCHOWS ARCHIV, 2009, 455 : 179 - 179