Effective medium approach of left-handed material using a dispersive FDTD method

被引:17
|
作者
Lee, JY [1 ]
Lee, JH
Kim, HS
Kang, NW
Jung, HK
机构
[1] Seoul Natl Univ, Sch Elect Engn & Comp Sci, Seoul, South Korea
[2] Hongik Univ, Dept Radio Sci & Commun Engn, Seoul 121791, South Korea
[3] Chung Ang Univ, Sch Elect & Elect Engn, Seoul 156756, South Korea
关键词
anisotropic perfectly matched layer (APML); dispersive medium; double negative (DNG); finite difference time domain (FDTD); left-handed material (LHM); metamaterial; piecewise linear recursive convolution (PLRC); split ring resonator (SRR);
D O I
10.1109/TMAG.2005.844566
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Left-handed material (LHM) exhibiting negative permittivity and negative permeability in certain band has dispersive medium property varying with frequency. The effective permittivity and permeability function of this material have a similar form of Lorentz material model. Piecewise linear recursive convolution (PLRC) technique for finite difference time domain (FDTD) method is applied to simulate the propagation characteristic of LHM effectively. Modified anisotropic perfectly matched layer (APML) is proposed for absorbing boundary condition of LHM. The simulation results show narrow pass band in the stop band where LHMs have double negative properties.
引用
收藏
页码:1484 / 1487
页数:4
相关论文
共 50 条
  • [21] Waveguiding in air with left-handed material
    Xie, Dequan
    Guan, Chunying
    Yuan, Libo
    FUNDAMENTAL PROBLEMS OF OPTOELECTRONICS AND MICROELECTRONICS III, PTS 1 AND 2, 2007, 6595
  • [22] Reflection and transmission from left-handed material structures using Lorentz and Drude medium models
    Taya, S. A.
    El-Amassi, D. M.
    OPTO-ELECTRONICS REVIEW, 2015, 23 (03) : 214 - 221
  • [23] Simulations of the left-handed medium using discontinuous Galerkin method based on the hybrid domains
    Shi, Y.
    Liang, C. -H.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2006, 63 : 171 - 191
  • [24] Surface modes in photonic crystal waveguides coated with a layer of dispersive left-handed material
    Alva-Medrano, H.
    Perez-Aguilar, H.
    Mendoza-Suarez, A.
    Villa-Villa, F.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 105 : 196 - 201
  • [25] Backward coupling waveguide coupler using left-handed material
    Yu Yuan
    Ran, Lixin
    Chen, Hongsheng
    Huangfu, Jiangtao
    Grzegorczyk, Tomasz M.
    Jin Au Kong
    APPLIED PHYSICS LETTERS, 2006, 88 (21)
  • [26] Bilayer metamaterial: analysis of left-handed transmission and retrieval of effective medium parameters
    Guven, K.
    Cakmak, A. O.
    Caliskan, M. D.
    Gundogdu, T. F.
    Kafesaki, M.
    Soukoulis, C. M.
    Ozbay, E.
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2007, 9 (09): : S361 - S365
  • [27] Efficient FDTD method for analysis of mushroom-structure based left-handed materials
    Wu, W.-Y.
    Lai, A.
    Kuo, C. -W.
    Leong, K. M. K. H.
    Itoh, T.
    IET MICROWAVES ANTENNAS & PROPAGATION, 2007, 1 (01) : 100 - 107
  • [28] New approach to the theory of a moving charge's radiation in dispersive medium and its application to the case of left-handed materials
    Galyamin, S. N.
    Tyukhtin, A. V.
    VIII INTERNATIONAL SYMPOSIUM ON RADIATION FROM RELATIVISTIC ELECTRONS IN PERIODIC STRUCTURES (RREPS-2009), 2010, 236
  • [29] Photonic-resonant left-handed medium
    Shen, Jian Qi
    PHYSICS LETTERS A, 2006, 357 (01) : 54 - 60
  • [30] “Right-handed” and “left-handed” polaritons in material media
    V. S. Gorelik
    Bulletin of the Lebedev Physics Institute, 2013, 40 : 150 - 156