Localised labyrinthine patterns in ecosystems

被引:7
|
作者
Clerc, M. G. [1 ,2 ]
Echeverria-Alar, S. [1 ,2 ]
Tlidi, M. [3 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Casilla 487-3, Santiago, Chile
[2] Univ Chile, Fac Ciencias Fis & Matemat, Millennium Inst Res Opt, Casilla 487-3, Santiago, Chile
[3] Univ Libre Bruxelles ULB, Fac Sci, Dept Phys, CP 231,Campus Plaine, B-1050 Brussels, Belgium
关键词
VEGETATION; ORIGIN;
D O I
10.1038/s41598-021-97472-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Self-organisation is a ubiquitous phenomenon in ecosystems. These systems can experience transitions from a uniform cover towards the formation of vegetation patterns as a result of symmetry-breaking instability. They can be either periodic or localised in space. Localised vegetation patterns consist of more or less circular spots or patches that can be either isolated or randomly distributed in space. We report on a striking patterning phenomenon consisting of localised vegetation labyrinths. This intriguing pattern is visible in satellite photographs taken in many territories of Africa and Australia. They consist of labyrinths which is spatially irregular pattern surrounded by either a homogeneous cover or a bare soil. The phenomenon is not specific to particular plants or soils. They are observed on strictly homogenous environmental conditions on flat landscapes, but they are also visible on hills. The spatial size of localized labyrinth ranges typically from a few hundred meters to ten kilometres. A simple modelling approach based on the interplay between short-range and long-range interactions governing plant communities or on the water dynamics explains the observations reported here.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Stationary localised patterns without Turing instability
    Al Saadi, Fahad
    Worthy, Annette
    Msmali, Ahmed
    Nelson, Mark
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9111 - 9129
  • [22] Localised Radial Patterns on the Free Surface of a Ferrofluid
    Hill, Dan J.
    Lloyd, David J. B.
    Turner, Matthew R.
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (05)
  • [23] Drifting Faraday patterns under localised driving
    Juan F. Marín
    Rafael Riveros-Ávila
    Saliya Coulibaly
    Majid Taki
    Leonardo Gordillo
    Mónica A. García-Ñustes
    Communications Physics, 6
  • [24] Inverse transition of labyrinthine domain patterns in ferroelectric thin films
    Y. Nahas
    S. Prokhorenko
    J. Fischer
    B. Xu
    C. Carrétéro
    S. Prosandeev
    M. Bibes
    S. Fusil
    B. Dkhil
    V. Garcia
    L. Bellaiche
    Nature, 2020, 577 : 47 - 51
  • [25] Inverse transition of labyrinthine domain patterns in ferroelectric thin films
    Nahas, Y.
    Prokhorenko, S.
    Fischer, J.
    Xu, B.
    Carretero, C.
    Prosandeev, S.
    Bibes, M.
    Fusil, S.
    Dkhil, B.
    Garcia, V.
    Bellaiche, L.
    NATURE, 2020, 577 (7788) : 47 - +
  • [26] Formation and transition of labyrinthine domain patterns in a nonlinear optical system
    Lu, Weiping
    Lachinova, Svetlana L.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2001, 63 (01): : 013807 - 013801
  • [27] DEFOLIATION PATTERNS IN MATORRAL ECOSYSTEMS
    FUENTES, ER
    ETCHEGARAY, J
    ECOLOGICAL STUDIES, 1983, 43 : 525 - 542
  • [28] Approximate localised dihedral patterns near a turing instability
    Hill, Dan J.
    Bramburger, Jason J.
    Lloyd, David J. B.
    NONLINEARITY, 2023, 36 (05) : 2567 - 2630
  • [29] Exponential asymptotics of localised patterns and snaking bifurcation diagrams
    Chapman, S. J.
    Kozyreff, G.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) : 319 - 354
  • [30] labyrinthine reactions and equilibrium, labyrinthine ataxia
    Lambercier, M. R.
    ARCHIVES DE PSYCHOLOGIE, 1938, 27 (105) : 105 - 105