Using enzyme cascades in biocatalysis: Highlight on transaminases and carboxylic acid reductases

被引:32
|
作者
Cutlan, Rhys [1 ]
De Rose, Simone [2 ]
Isupov, Michail N. [2 ]
Littlechild, Jennifer A. [2 ]
Harmer, Nicholas J. [1 ]
机构
[1] Univ Exeter, Living Syst Inst, Stocker Rd, Exeter EX4 4QD, Devon, England
[2] Univ Exeter, Henry Wellcome Bldg Biocatalysis, Biosci, Stocker Rd, Exeter EX4 4QD, Devon, England
来源
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS | 2020年 / 1868卷 / 02期
基金
英国生物技术与生命科学研究理事会;
关键词
Enzyme cascades; Green chemistry; Cofactor regeneration; Transaminase; Carboxylic acid reductase; BAEYER-VILLIGER MONOOXYGENASES; ASYMMETRIC-SYNTHESIS; OMEGA-TRANSAMINASE; CHIRAL AMINES; CAPROLACTONE SYNTHESIS; SUBSTRATE-SPECIFICITY; PYRUVATE TRANSAMINASE; 2-STEP CASCADE; FATTY-ACIDS; REGENERATION;
D O I
10.1016/j.bbapap.2019.140322
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biocatalysis, the use of enzymes in chemical transformations, is an important green chemistry tool. Cascade reactions combine different enzyme activities in a sequential set of reactions. Cascades can occur within a living (usually bacterial) cell; in vitro in 'one pot' systems where the desired enzymes are mixed together to carry out the multi-enzyme reaction; or using microfluidic systems. Microfluidics offers particular advantages when the product of the reaction inhibits the enzyme(s). In vitro systems allow variation of different enzyme concentrations to optimise the metabolic 'flux', and the addition of enzyme cofactors as required. Cascades including cofactor recycling systems and modelling approaches are being developed to optimise cascades for wider industrial scale use. Two industrially important enzymes, transaminases and carboxylic acid reductases are used as examples regarding their applications in cascade reactions with other enzyme classes to obtain important synthons of pharmaceutical interest.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Aspergillus sclerotiorum Whole-Cell Biocatalysis: A Sustainable Approach to Produce 3-Hydroxy-phenazine 1-Carboxylic Acid from Phenazine 1-Carboxylic Acid
    Jan, Malik
    Yue, Sheng-Jie
    Deng, Ru-Xiang
    Nie, Yan-Fang
    Zhang, Hong-Yan
    Hao, Xiang-Rui
    Wang, Wei
    Hu, Hong-Bo
    Zhang, Xue-Hong
    FERMENTATION-BASEL, 2023, 9 (06):
  • [42] To the Understanding of Catalysis by D-Amino Acid Transaminases: A Case Study of the Enzyme from Aminobacterium colombiense
    Shilova, Sofia A.
    Khrenova, Maria G.
    Matyuta, Ilya O.
    Nikolaeva, Alena Y.
    Rakitina, Tatiana V.
    Klyachko, Natalia L.
    Minyaev, Mikhail E.
    Boyko, Konstantin M.
    Popov, Vladimir O.
    Bezsudnova, Ekaterina Yu.
    MOLECULES, 2023, 28 (05):
  • [43] Light-Triggered Biocatalysis Using Thermophilic Enzyme-Gold Nanoparticle Complexes
    Blankschien, Matthew D.
    Pretzer, Lori A.
    Huschka, Ryan
    Halas, Naomi J.
    Gonzalez, Ramon
    Wong, Michael S.
    ACS NANO, 2013, 7 (01) : 654 - 663
  • [44] Sm(II)-Mediated Electron Transfer to Carboxylic Acid Derivatives: Development of Complexity-Generating Cascades
    Just-Baringo, Xavier
    Procter, David J.
    ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (05) : 1263 - 1275
  • [45] Enzyme-free uric acid electrochemical sensors using β-cyclodextrin-modified carboxylic acid-functionalized carbon nanotubes
    Wayu, Mulugeta B.
    Schwarzmann, Margaret A.
    Gillespie, Samuel D.
    Leopold, Michael C.
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (10) : 6050 - 6062
  • [46] Enzyme-free uric acid electrochemical sensors using β-cyclodextrin-modified carboxylic acid-functionalized carbon nanotubes
    Mulugeta B. Wayu
    Margaret A. Schwarzmann
    Samuel D. Gillespie
    Michael C. Leopold
    Journal of Materials Science, 2017, 52 : 6050 - 6062
  • [47] Nucleic Acid-based Enzyme Cascades-Current Trends and Future Perspectives
    Kroell, Sandra
    Niemeyer, Christof M.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (05)
  • [48] Repetitive Synthesis of High-Molecular-Weight Hyaluronic Acid with Immobilized Enzyme Cascades
    Gottschalk, Johannes
    Assmann, Miriam
    Kuballa, Juergen
    Elling, Lothar
    CHEMSUSCHEM, 2022, 15 (09)
  • [49] THE TUNGSTEN OR MOLYBDENUM CONTAINING CARBOXYLIC-ACID REDUCTASES FROM CLOSELY RELATED MICROORGANISMS SHOW RATHER DIFFERENT PROPERTIES
    WHITE, H
    STROBL, G
    FEICHT, R
    LOTTSPEICH, F
    SIMON, H
    BIOLOGICAL CHEMISTRY HOPPE-SEYLER, 1991, 372 (09): : 777 - 778
  • [50] α-chlorination of carboxylic acids using trichloroisocyanuric acid
    Hiegel, GA
    Faber, DD
    Lewis, JC
    Tran, TD
    Hobson, GG
    Farokhi, F
    SYNTHETIC COMMUNICATIONS, 2004, 34 (05) : 889 - 893