共 50 条
APRIL:TACI axis is dispensable for the immune response to rabies vaccination
被引:3
|作者:
Haley, Shannon L.
[1
]
Tzvetkov, Evgeni P.
[1
]
Lytle, Andrew G.
[1
]
Alugupalli, Kishore R.
[1
]
Plummer, Joseph R.
[1
]
McGettigan, James P.
[1
,2
]
机构:
[1] Thomas Jefferson Univ, Dept Microbiol & Immunol, Philadelphia, PA 19107 USA
[2] Thomas Jefferson Univ, Jefferson Vaccine Ctr, Philadelphia, PA 19107 USA
基金:
美国国家卫生研究院;
关键词:
Rabies;
Vaccine;
APRIL;
TACI;
Antibody;
NECROSIS-FACTOR FAMILY;
B-CELL;
PLASMA-CELLS;
VIRUS;
BAFF;
TACI;
INFECTION;
VACCINES;
RECEPTOR;
BCMA;
D O I:
10.1016/j.antiviral.2017.06.004
中图分类号:
R9 [药学];
学科分类号:
1007 ;
摘要:
There is significant need to develop a single-dose rabies vaccine to replace the current multi-dose rabies vaccine regimen and eliminate the requirement for rabies immune globulin in post-exposure settings. To accomplish this goal, rabies virus (RABV)-based vaccines must rapidly activate B cells to secrete antibodies which neutralize pathogenic RABV before it enters the CNS. Increased understanding of how B cells effectively respond to RABV-based vaccines may improve efforts to simplify post-exposure prophylaxis (PEP) regimens. Several studies have successfully employed the TNF family cytokine a proliferation-inducing ligand (APRIL) as a vaccine adjuvant. APRIL binds to the receptors TACI and B cell maturation antigen (BCMA) expressed by B cells in various stages of maturation with high affinity. We discovered that RABV-infected primary murine B cells upregulate APRIL ex vivo. Cytokines present at the time of antigen exposure affect the outcome of vaccination by influencing T and B cell activation and GC formation. Therefore, we hypothesized that the presence of APRIL at the time of RABV-based vaccine antigen exposure would support the generation of protective antibodies against RABV glycoprotein (G). In an effort to improve the response to RABV vaccination, we constructed and characterized a live recombinant RABV-based vaccine vector which expresses murine APRIL (rRABV-APRIL). lmmunogenicity testing in mice demonstrated that expressing APRIL from the RABV genome does not impact the primary antibody response against RABV G compared to RABV alone. In order to evaluate the necessity of APRIL for the response to rabies vaccination, we compared the responses of APRIL-deficient and wild-type mice to immunization with rRABV. APRIL deficiency does not affect the primary antibody response to vaccination. Furthermore, APRIL expression by the vaccine did not improve the generation of long-lived antibody-secreting plasma cells (PCs) as serum antibody levels were equivalent in response to rRABV-APRIL and the vector eight weeks after immunization. Moreover, APRIL is dispensable for the long-lived antibody-secreting PC response to rRABV vaccination as anti-RABV G IgG levels were similar in APRIL-deficient and wild-type mice six months after vaccination. Mice lacking the APRIL receptor TACI demonstrated primary anti-RABV G antibody responses similar to wild-type mice following immunization with the vaccine vector indicating that this response is independent of TACI-mediated signals. Collectively, our findings demonstrate that APRIL and associated TACI signaling is dispensable for the immune response to RABV-based vaccination. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 137
页数:8
相关论文