Biomimetic hierarchical porous carbon fibers via block copolymer self-assembly

被引:6
|
作者
Salim, Nisa V. [1 ]
Jin, Xing [1 ]
Mateti, Srikanth [2 ]
Subhani, Karamat [1 ]
机构
[1] Swinburne Univ Technol, Sch Engn, Hawthorn, Vic 3122, Australia
[2] Deakin Univ, Inst Frontier Mat, Pigdons Rd, Geelong, Vic 3216, Australia
关键词
Carbon fibers; Porosity; Block copolymer; Self-assembly; Wet spinning; Biomimicry and capacitance; AEROGEL; OIL; FABRICATION; EFFICIENT; COTTON; GREEN;
D O I
10.1016/j.micromeso.2021.111136
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Materials with well-defined porous structures, high conductivity and surface area are promising candidates in energy storage, oil absorption and catalysis applications. This work demonstrates, for the very first time, a new facile route to prepare carbon fibers exhibiting hierarchical porous designs that mimic deep-sea sponges. The fibres were prepared via wet spinning method using poly (acrylonitrile)-block-poly (methyl methacrylate) (ANMMA) block copolymers. The hierarchical porous morphologies were formed in carbon fibers due to the combined effect of self-assembly and solvent/non-solvent induced phase separation during the coagulation process. Continuous and interconnected macroporous features were observed in fibers with abundant small-sized nanopores and the fiber surface area was calculated to be 499 m2/g. Electrochemical analyses showed that the fibers possess a specific capacitance of 130 F/g at 10 A/g with excellent cyclic stability of 97% capacitance retention after 10,000 cycles. The porous fibers also exhibited excellent sorption properties with a range of organic solvents and oil, demonstrating high absorbent potential for oil/chemical clean-up. The absorption capacities were in the range of 70-92 g/g for different types of organic solvents and oil. This study paves the way towards a new class of porous carbon materials with nature mimicking designs for multifunctional applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Superlattice by charged block copolymer self-assembly
    Jimin Shim
    Frank S. Bates
    Timothy P. Lodge
    Nature Communications, 10
  • [32] Nanopatterning Biomolecules by Block Copolymer Self-Assembly
    Killops, Kato L.
    Gupta, Nalini
    Dimitriou, Michael D.
    Lynd, Nathaniel A.
    Jung, Hyunjung
    Tran, Helen
    Bang, Joona
    Campos, Luis M.
    ACS MACRO LETTERS, 2012, 1 (06) : 758 - 763
  • [33] Self-assembly of block copolymer thin films
    Albert, Julie N. L.
    Epps, Thomas H., III
    MATERIALS TODAY, 2010, 13 (06) : 24 - 33
  • [34] SELF-ASSEMBLY IN AQUEOUS BLOCK COPOLYMER SOLUTIONS
    MALMSTEN, M
    LINDMAN, B
    MACROMOLECULES, 1992, 25 (20) : 5440 - 5445
  • [35] Block Copolymer Controlled Nanoparticle Self-assembly
    Ma, Shi-ying
    Wang, Rong
    ACTA POLYMERICA SINICA, 2016, (08): : 1030 - 1041
  • [36] Block Copolymer Self-Assembly in SolutionQuo Vadis?
    Brendel, Johannes C.
    Schacher, Felix H.
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (03) : 230 - 239
  • [37] Self-assembly of nanostructured block copolymer nanoparticles
    Jin, Zhaoxia
    Fan, Hailong
    SOFT MATTER, 2014, 10 (46) : 9212 - 9219
  • [38] Self-assembly scenarios of block copolymer stars
    Koch, Christian
    Likos, Christos N.
    Panagiotopoulos, Athanassios Z.
    Lo Verso, Federica
    MOLECULAR PHYSICS, 2011, 109 (23-24) : 3049 - 3060
  • [39] Self-assembly of block copolymer nanopatterns on surfaces
    Buriak, Jillian
    Jin, Cong
    Luber, Erik
    Olsen, Brian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [40] Directed Self-Assembly of Hierarchical Supramolecular Block Copolymer Thin Films on Chemical Patterns
    Wu, Guang-Peng
    Liu, Xiaoying
    Chen, Xuanxuan
    Suh, Hyo Seon
    Li, Xiao
    Ren, Jiaxing
    Arges, Christopher G.
    Li, Faxue
    Jiang, Zhang
    Nealey, Paul F.
    ADVANCED MATERIALS INTERFACES, 2016, 3 (13):