Momentum-space representation of Green's functions with modified dispersion relations on general backgrounds

被引:13
|
作者
Rinaldi, Massimiliano [1 ]
机构
[1] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland
来源
PHYSICAL REVIEW D | 2008年 / 78卷 / 02期
关键词
D O I
10.1103/PhysRevD.78.024025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the problem of calculating the Green's functions associated to a massive scalar field with modified dispersion relations. We analyze the case when dispersion is modified by higher derivative spatial operators acting on the field orthogonally to a preferred direction, determined by a unit timelike vector field. By assuming that the integral curves of the vector field are geodesics, we expand the modified Klein-Gordon equation in Fermi normal coordinates. By means of a Fourier transform, we find a series representation in momentum-space of the Green's functions. The coefficients of the series are geometrical terms containing combinations of the Ricci tensor and the vector field, as expected from previous calculations with different methods and for specific backgrounds.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] The momentum representation of the two-body Coulomb Green's function in n-dimensional space
    Shablov, VL
    Bilyk, VA
    Popov, YV
    JOURNAL DE PHYSIQUE IV, 1999, 9 (P6): : 65 - 69
  • [32] Green's functions of recurrence relations with reflection
    Tojo, F. Adrian F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (02) : 1463 - 1485
  • [33] Spin density in YTiO3: II. Momentum-space representation of electron spin density supported by position-space results
    Yan, Z.
    Kibalin, I. A.
    Claiser, N.
    Gueddida, S.
    Gillon, B.
    Gukasov, A.
    Voufack, A. B.
    Morini, F.
    Sakurai, Y.
    Brancewicz, M.
    Itou, M.
    Itoh, M.
    Tsuji, N.
    Ito, M.
    Souhassou, M.
    Lecomte, C.
    Cortona, P.
    Gillet, J. -M.
    PHYSICAL REVIEW B, 2017, 96 (05)
  • [34] Hamilton geometry: Phase space geometry from modified dispersion relations
    Barcaroli, Leonardo
    Brunkhorst, Lukas K.
    Gubitosi, Giulia
    Loret, Niccolo
    Pfeifer, Christian
    PHYSICAL REVIEW D, 2015, 92 (08):
  • [35] Angle and angular momentum: Uncertainty relations, simultaneous measurement, and phase-space representation
    Mista, Ladislav, Jr.
    de Guise, Hubert
    Rehacek, Jaroslav
    Hradil, Zdenek
    PHYSICAL REVIEW A, 2022, 106 (02)
  • [36] Tensor representation of Green's functions in φk theory
    Zhang, LC
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1999, 112 (04): : 345 - 358
  • [37] Multiple scattering and modified Green's functions
    Martin, PA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (02) : 642 - 656
  • [38] Seismoelectromagnetic homogeneous space Green's functions
    Slob, Evert
    Mulder, Maarten
    GEOPHYSICS, 2016, 81 (04) : F27 - F40
  • [39] CALCULATION OF GREEN-FUNCTIONS BY COUPLING-CONSTANT DISPERSION-RELATIONS
    BOGOMOLNY, EB
    PHYSICS LETTERS B, 1977, 67 (02) : 193 - 194
  • [40] THE REPRESENTATION OF GREEN-FUNCTIONS IN A CURVED SPACE OF TIME BY CONTOUR INTEGRALS
    BUCHBINDER, IL
    ODINTSOV, SD
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1982, 25 (07): : 124 - 125