3D Object Detection with Latent Support Surfaces

被引:13
|
作者
Ren, Zhile [1 ]
Sudderth, Erik B. [2 ]
机构
[1] Brown Univ, Providence, RI 02912 USA
[2] Univ Calif Irvine, Irvine, CA USA
来源
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2018年
关键词
D O I
10.1109/CVPR.2018.00104
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a 3D object detection algorithm that uses latent support surfaces to capture contextual relationships in indoor scenes. Existing 3D representations for RGB-D images capture the local shape and appearance of object categories, but have limited power to represent objects with different visual styles. The detection of small objects is also challenging because the search space is very large in 3D scenes. However, we observe that much of the shape variation within 3D object categories can be explained by the location of a latent support surface, and smaller objects are often supported by larger objects. Therefore, we explicitly use latent support surfaces to better represent the 3D appearance of large objects, and provide contextual cues to improve the detection of small objects. We evaluate our model with 19 object categories from the SUN RGB-D database, and demonstrate state-of-the-art performance.
引用
收藏
页码:937 / 946
页数:10
相关论文
共 50 条
  • [41] Object Detection using Categorised 3D Edges
    Kiforenko, Lilita
    Buch, Anders Glent
    Bodenhagen, Leon
    Kruger, Norbert
    SEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2014), 2015, 9445
  • [42] Semantic Consistency Networks for 3D Object Detection
    Wei, Wenwen
    Wei, Ping
    Zheng, Nanning
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2861 - 2869
  • [43] 3D Object Detection Based on LiDAR Data
    Sahba, Ramin
    Sahba, Amin
    Jamshidi, Mo
    Rad, Paul
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 511 - 514
  • [44] Monocular 3D Object Detection for Autonomous Driving
    Chen, Xiaozhi
    Kundu, Kaustav
    Zhang, Ziyu
    Ma, Huimin
    Fidler, Sanja
    Urtasun, Raquel
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2147 - 2156
  • [45] Object detection using a cascade of 3D models
    Pong, HK
    Cham, TJ
    COMPUTER VISION - ACCV 2006, PT II, 2006, 3852 : 284 - 293
  • [46] Distribution Aware VoteNet for 3D Object Detection
    Liang, Junxiong
    An, Pei
    Ma, Jie
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1583 - 1591
  • [47] Dimension Embeddings for Monocular 3D Object Detection
    Zhang, Yunpeng
    Zheng, Wenzhao
    Zhu, Zheng
    Huang, Guan
    Du, Dalong
    Zhou, Jie
    Lu, Jiwen
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1579 - 1588
  • [48] Uncertainty Characterization for 3D Object Detection Algorithms
    Ding, Bao Ming
    Huangfu, Yixin
    Habibi, Saeid
    2023 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO, ITEC, 2023,
  • [49] Multimodal 3D Histogram for Moving Object Detection
    Mukherjee, Dibyendu
    Saha, Ashirbani
    Wu, Q. M. Jonathan
    Jiang, Wei
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 2397 - 2402
  • [50] DROP SPARSE CONVOLUTION FOR 3D OBJECT DETECTION
    Zhu, Taohong
    Shen, Jun
    Wang, Chali
    Xiong, Huiyuan
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 3185 - 3189