Implementation of neural network with approximations functions

被引:0
|
作者
Hnatiuc, M [1 ]
Lamarque, G [1 ]
机构
[1] Tech Univ Gh Asachi Iasi, Iasi, Romania
关键词
non-linear functions; gauss function; sigmoid function; neural network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of this work is to simulate a neural network with non-linear activation functions. The non-linear functions are simulated in Microsoft Visual Studio C++ 6.0 to observe the precision and to implement on the programmable logic devices. This network is realized to accept very small input values. The multiplication between input values and weight values is realized with the add-logarithm and exponential functions. One approximates all the non-linear functions with linear functions using shift-add blocks.
引用
收藏
页码:553 / 556
页数:4
相关论文
共 50 条
  • [1] Approximation of functions and their derivatives: A neural network implementation with applications
    Nguyen-Thien, T
    Tran-Cong, T
    APPLIED MATHEMATICAL MODELLING, 1999, 23 (09) : 687 - 704
  • [2] High precision FPGA implementation of neural network activation functions
    Ortega-Zamorano, Francisco
    Jerez, Jose M.
    Juarez, Gustavo
    Perez, Jorge O.
    Franco, Leonardo
    2014 IEEE SYMPOSIUM ON INTELLIGENT EMBEDDED SYSTEMS (IES), 2014, : 55 - 60
  • [3] Artificial neural network approximation of special functions: design, analysis and implementation
    Shah, Divya K.
    Vyawahare, Vishwesh A.
    Sadanand, Sangeeth
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2025, 13 (01) : 25 - 25
  • [4] Hardware implementation of neural network with Sigmoidal activation functions using CORDIC
    Tiwari, Vipin
    Khare, Nilay
    MICROPROCESSORS AND MICROSYSTEMS, 2015, 39 (06) : 373 - 381
  • [5] CONSTRUCTIVE APPROXIMATIONS FOR NEURAL NETWORKS BY SIGMOIDAL FUNCTIONS
    JONES, LK
    PROCEEDINGS OF THE IEEE, 1990, 78 (10) : 1586 - 1589
  • [6] Towards Current-Mode Analog Implementation of Deep Neural Network Functions
    Wang, Shihao
    AL-Tamimi, Karama M.
    Hammad, Issam
    El-Sankary, Kamal
    2022 20TH IEEE INTERREGIONAL NEWCAS CONFERENCE (NEWCAS), 2022, : 322 - 326
  • [7] Approximations by multivariate perturbed neural network operators
    Anastassiou, George A.
    ANALYSIS AND APPLICATIONS, 2017, 15 (03) : 413 - 432
  • [8] Implementation of High Speed Tangent Sigmoid Transfer Function Approximations for Artificial Neural Network Applications on FPGA
    Koyuncu, Ismail
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2018, 18 (03) : 79 - 86
  • [9] Sigmoidal approximations of Heaviside functions in neural lattice models
    Han, Xiaoying
    Kloeden, Peter E.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) : 5283 - 5300
  • [10] Enhancing Cloud Security through Efficient Polynomial Approximations for Homomorphic Evaluation of Neural Network Activation Functions
    Pulido-Gaytani, Bernardo
    Tchernykh, Andrei
    Babenko, Mikhail
    Cortes-Mendoza, Jorge M.
    Gonzalez-Velez, Horacio
    Avetisyan, Arutyun
    2024 IEEE 24TH INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING WORKSHOPS, CCGRIDW 2024, 2024, : 42 - 49