A hybrid genetic algorithm for MOSFET parameter extraction

被引:0
|
作者
Antoun, G [1 ]
El-Nozahi, M [1 ]
Fikry, W [1 ]
Abbas, H [1 ]
机构
[1] Mentor Graph Corp, Cairo 11341, Egypt
关键词
Genetic Algorithms; transistor models; nonlinear optimization; MOSFET parameter extraction;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
New transistor models are becoming more complex to accommodate the new effects introduced by shrinking channel length and new fabrication structures. Conventional parameter extraction techniques perform poorly when applied to these new models. In this paper, a new hybrid evolutionary algorithm is adopted in order to address the problems normally encountered in conventional algorithms and to obtain accurate parameter values. The algorithm relies on applying a Genetic Algorithms (GA) in order to reach a near-optimal solution then a conventional least squares optimization process is applied to find the optimal parameter set. The proposed algorithm has outperformed both conventional parameter extraction techniques and pure GA-based ones. The proposed hybrid algorithm was tested on the available data for different 12 NMOS devices of different gate lengths and widths for the 0.35mm technology. The evolutionary algorithm resulted in RMS fitting errors in the range form 0.5% to 1.5% compared to a value of 4% error when conventional parameter extraction techniques were applied.
引用
收藏
页码:1111 / 1114
页数:4
相关论文
共 50 条
  • [31] Application of hybrid genetic algorithm in power system parameter measurement
    Wuhan University, Wuhan 430072, China
    不详
    Dianli Xitong Zidonghue, 2007, 12 (86-91):
  • [32] A hybrid improved genetic algorithm for the estimation of biodegradation kinetics parameter
    Sun, W
    Zeng, GM
    Wei, WZ
    Huang, GH
    Wei, AL
    ENERGY & ENVIRONMENT - A WORLD OF CHALLENGES AND OPPORTUNITIES, PROCEEDINGS, 2003, : 849 - 854
  • [33] Parameter Optimization of Hydraulic Hybrid Vehicle Based on Genetic Algorithm
    Liu Tao
    Ju Xuezhen
    APPLIED MECHANICS AND MECHANICAL ENGINEERING, PTS 1-3, 2010, 29-32 : 1079 - 1084
  • [34] Hybrid neural-genetic multimodal parameter estimation algorithm
    Petridis, V
    Paterakis, E
    Kehagias, A
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (05): : 862 - 876
  • [35] Statistical MOSFET parameter extraction with parameter selection for minimal point measurement
    Alisjahbana, Marga
    Telkomnika, 2013, 11 (03): : 503 - 512
  • [36] Parameter extraction of fuel cells using hybrid interior search algorithm
    Kler, Dhruv
    Rana, Kanwar P. S.
    Kumar, Vineet
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (07) : 2854 - 2880
  • [37] Critical evaluation of Genetic Algorithm based fuel cell parameter extraction
    Balasubramanian, Karthik
    Jacob, Basil
    Priya, K.
    Sangeetha, K.
    Rajasekar, N.
    Babu, T. Sudhakar
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 1975 - 1982
  • [38] Hybrid Genetic Algorithm for Medical Image Feature Extraction and selection
    Nagarajan, G.
    Minu, R. I.
    Muthukumar, B.
    Vedanarayanan, V.
    Sundarsingh, S. D.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELLING AND SECURITY (CMS 2016), 2016, 85 : 455 - 462
  • [39] A Modified MODPEX Model for MOSFET and Parameter Optimization Using Excel-based Genetic Algorithm
    Chen, Zhiyang
    Lindeman, Richard
    2012 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2012, : 2616 - 2622
  • [40] Efficient Statistical Parameter Extraction for Modeling MOSFET Mismatch
    Wu, Kun
    Guo, Nanlin
    Li, Fei
    Zhu, Nengyong
    Tao, Jun
    Li, Xin
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (05) : 1618 - 1622