Brain-inspired computing with memristors: Challenges in devices, circuits, and systems

被引:276
|
作者
Zhang, Yang [1 ,2 ]
Wang, Zhongrui [2 ]
Zhu, Jiadi [3 ]
Yang, Yuchao [3 ]
Rao, Mingyi [2 ]
Song, Wenhao [2 ]
Zhuo, Ye [2 ]
Zhang, Xumeng [2 ,4 ,5 ]
Cui, Menglin [6 ]
Shen, Linlin [1 ]
Huang, Ru [3 ]
Joshua Yang, J. [2 ]
机构
[1] Shenzhen Univ, Sch Comp Sci & Software Engn, Shenzhen 518060, Guangdong, Peoples R China
[2] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[3] Peking Univ, Inst Microelect, Key Lab Microelect Devices & Circuits MOE, Beijing 100871, Peoples R China
[4] Chinese Acad Sci, Inst Microelect, Key Lab Microelect Device & Integrated Technol, Beijing 100029, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[6] Univ Nottingham, Sch Comp Sci, Ningbo 315100, Zhejiang, Peoples R China
来源
APPLIED PHYSICS REVIEWS | 2020年 / 7卷 / 01期
基金
中国国家自然科学基金;
关键词
RESISTIVE-SWITCHING MEMORY; PHASE-CHANGE MEMORY; SPIKING NEURAL-NETWORK; RANDOM-ACCESS MEMORY; SYNAPSE DEVICE; CONDUCTANCE LINEARITY; FEATURE-EXTRACTION; CROSSBAR ARRAYS; COMPACT MODEL; MECHANISMS;
D O I
10.1063/1.5124027
中图分类号
O59 [应用物理学];
学科分类号
摘要
This article provides a review of current development and challenges in brain-inspired computing with memristors. We review the mechanisms of various memristive devices that can mimic synaptic and neuronal functionalities and survey the progress of memristive spiking and artificial neural networks. Different architectures are compared, including spiking neural networks, fully connected artificial neural networks, convolutional neural networks, and Hopfield recurrent neural networks. Challenges and strategies for nanoelectronic brain-inspired computing systems, including device variations, training, and testing algorithms, are also discussed.
引用
收藏
页数:24
相关论文
共 50 条
  • [11] Brain-inspired computing
    Furber, Steve B.
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2016, 10 (06): : 299 - 305
  • [12] Brain-Inspired Computing
    Modha, Dharmendra S.
    2015 INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURE AND COMPILATION (PACT), 2015, : 253 - 253
  • [13] Brain-inspired nanophotonic spike computing: challenges and prospects
    Romeira, Bruno
    Adao, Ricardo
    Nieder, Jana B.
    Al-Taai, Qusay
    Zhang, Weikang
    Hadfield, Robert H.
    Wasige, Edward
    Hejda, Matej
    Hurtado, Antonio
    Malysheva, Ekaterina
    Calzadilla, Victor Dolores
    Lourenco, Joao
    Alves, D. Castro
    Figueiredo, Jose M. L.
    Ortega-Piwonka, Ignacio
    Javaloyes, Julien
    Edwards, Stuart
    Davies, J. Iwan
    Horst, Folkert
    Offrein, Bert J.
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2023, 3 (03):
  • [14] Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing
    Wang, Zongwei
    Yin, Minghui
    Zhang, Teng
    Cai, Yimao
    Wang, Yangyuan
    Yang, Yuchao
    Huang, Ru
    NANOSCALE, 2016, 8 (29) : 14015 - 14022
  • [15] Emerging Memristive Devices for Brain-Inspired Computing and Artificial Perception
    Wang, Jingyu
    Zhu, Ying
    Zhu, Li
    Chen, Chunsheng
    Wan, Qing
    FRONTIERS IN NANOTECHNOLOGY, 2022, 4
  • [16] Brain-inspired computing systems: a systematic literature review
    Zolfagharinejad, Mohamadreza
    Alegre-Ibarra, Unai
    Chen, Tao
    Kinge, Sachin
    van der Wiel, Wilfred G.
    EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (06):
  • [17] Building brain-inspired computing
    Strukov, Dmitri
    Indiveri, Giacomo
    Grollier, Julie
    Fusi, Stefano
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [18] Brain-inspired Computing - Introduction
    Haas, Robert
    Pfeiffer, Michael
    ERCIM NEWS, 2021, (125): : 6 - 7
  • [19] Building brain-inspired computing
    Nature Communications, 10
  • [20] TOWARDS BRAIN-INSPIRED COMPUTING
    Gingl, Zoltan
    Kish, Laszlo B.
    Khatri, Sunil P.
    FLUCTUATION AND NOISE LETTERS, 2010, 9 (04): : 403 - 412