Coupling superconducting qubits via a cavity bus

被引:1112
|
作者
Majer, J. [1 ]
Chow, J. M. [1 ]
Gambetta, J. M. [1 ]
Koch, Jens [1 ]
Johnson, B. R. [1 ]
Schreier, J. A. [1 ]
Frunzio, L. [1 ]
Schuster, D. I. [1 ]
Houck, A. A. [1 ]
Wallraff, A. [1 ]
Blais, A. [1 ]
Devoret, M. H. [1 ]
Girvin, S. M. [1 ]
Schoelkopf, R. J. [1 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1038/nature06184
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine(1,2), and several examples(3-9) of two-qubit interactions and gates have been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gate operations between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a 'quantum bus', which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity-induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.
引用
收藏
页码:443 / 447
页数:5
相关论文
共 50 条
  • [21] Resonant Coupling Parameter Estimation with Superconducting Qubits
    Bejanin, J. H.
    Earnest, C. T.
    Sanders, Y. R.
    Mariantoni, M.
    PRX QUANTUM, 2021, 2 (04):
  • [22] Microwave-induced coupling of superconducting qubits
    Paraoanu, G. S.
    PHYSICAL REVIEW B, 2006, 74 (14):
  • [23] Quantum coherent tunable coupling of superconducting qubits
    Niskanen, A. O.
    Harrabi, K.
    Yoshihara, F.
    Nakamura, Y.
    Lloyd, S.
    Tsai, J. S.
    SCIENCE, 2007, 316 (5825) : 723 - 726
  • [24] Coupling two charge qubits via a superconducting resonator operating in the resonant and dispersive regimes
    Zhang, Chengxian
    Chan, Guo Xuan
    Wang, Xin
    Xue, Zheng-Yuan
    PHYSICAL REVIEW A, 2022, 106 (03)
  • [25] Entangling superconducting qubits in a multi-cavity system
    Yang, Chui-Ping
    Su, Qi-Ping
    Zheng, Shi-Biao
    Nori, Franco
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [26] Coupling high-overtone bulk acoustic wave resonators via superconducting qubits
    Crump, Wayne
    Valimaa, Alpo
    Sillanpaa, Mika A.
    APPLIED PHYSICS LETTERS, 2023, 123 (13)
  • [27] Coupling-modulation-mediated generation of stable entanglement of superconducting qubits via dissipation
    Ma, Sheng-Li
    Zhang, Jing
    Li, Xin-Ke
    Ren, Ya-Long
    Xie, Ji-Kun
    Cao, Ming-Tao
    Li, Fu-Li
    EPL, 2021, 135 (06)
  • [28] Entanglement of Two Superconducting Qubits in a Waveguide Cavity via Monochromatic Two-Photon Excitation
    Poletto, S.
    Gambetta, Jay M.
    Merkel, Seth T.
    Smolin, John A.
    Chow, Jerry M.
    Corcoles, A. D.
    Keefe, George A.
    PHYSICAL REVIEW LETTERS, 2012, 109 (24)
  • [29] Quantum switch for coupling highly detuned superconducting qubits
    Xie, Ji-kun
    Ma, Sheng-li
    Yang, Zhi-peng
    Li, Zhen
    Li, Fu-li
    PHYSICS LETTERS A, 2018, 382 (37) : 2626 - 2631
  • [30] Tuning the coupling between superconducting resonators with collective qubits
    Chen, Qi-Ming
    Liu, Yu-Xi
    Sun, Luyan
    Wu, Re-Bing
    PHYSICAL REVIEW A, 2018, 98 (04)