Transcription within a functional human centromere

被引:123
|
作者
Saffery, R
Sumer, H
Hassan, S
Wong, LH
Craig, JM
Todokoro, K
Anderson, M
Stafford, A
Choo, KHA
机构
[1] Royal Childrens Hosp, Murdoch Childrens Res Inst, Parkville, Vic 3052, Australia
[2] Riken Inst Phys & Chem Res, Lab Mol Cell Sci, Wako, Saitama 3510198, Japan
[3] Riken Inst Phys & Chem Res, Cell Fate Signalling Res Unit, Wako, Saitama 3510198, Japan
关键词
D O I
10.1016/S1097-2765(03)00279-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent data in yeast and Drosophila suggest a domain-like centromere structure with a modified chromatin core and flanking regions of heterochromatin. We have analyzed a functional human centromere and defined a region of increased chromosome scaffold/matrix attachment that overlaps three other distinct and nonoverlapping domains for constitutive centromere proteins CENP-A and CENP-H, and heterochromatin protein HP1. Transcriptional competency is intact throughout the S/MAR-enriched region and within the CENP-A- and CENP-H-associated chromatin. These results provide insights into the relationship between centromeric chromatin and transcriptional competency in vivo, highlighting the permissibility of transcription within the constitutively modified, nonheterochromatic chromatin of a functional eukaryotic centromere.
引用
收藏
页码:509 / 516
页数:8
相关论文
共 50 条
  • [11] Centromere Biology: Transcription Goes on Stage
    Perea-Resa, Carlos
    Blower, Michael D.
    MOLECULAR AND CELLULAR BIOLOGY, 2018, 38 (18)
  • [12] Transcription in the maintenance of centromere chromatin identity
    Chan, F. Lyn
    Wong, Lee H.
    NUCLEIC ACIDS RESEARCH, 2012, 40 (22) : 11178 - 11188
  • [13] A 19-allele polymorphic marker within the centromere of human chromosome 5
    Prades, C
    Laurent, AM
    Yurov, Y
    Puechberty, J
    Roizes, G
    CYTOGENETICS AND CELL GENETICS, 1996, 72 (01): : 69 - 71
  • [14] Centromere structure, not transcription, regulates Aurora B localization and SAC response in human cells
    Ferras, C.
    Galjart, N.
    Cruz, M.
    Maiato, H. J.
    MOLECULAR BIOLOGY OF THE CELL, 2016, 27
  • [15] Centromere innovations within a mouse species
    Gambogi, Craig W.
    Pandey, Nootan
    Dawicki-McKenna, Jennine M.
    Arora, Uma P.
    Liskovykh, Mikhail A.
    Ma, Jun
    Lamelza, Piero
    Larionov, Vladimir
    Lampson, Michael A.
    Logsdon, Glennis A.
    Dumont, Beth L.
    Black, Ben E.
    SCIENCE ADVANCES, 2023, 9 (46)
  • [16] Centromere Innovations within a Mouse Species
    Pandey, N.
    Gambogi, C.
    Dawicki-McKenna, J.
    Arora, U.
    Logsdon, G.
    Ma, J.
    Lamelza, P.
    Lampson, M.
    Dumont, B.
    Black, B.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 293 - 293
  • [17] Human Centromere and Neocentromere
    Choo, K. H. Andy
    Marshall, Owen J.
    Chueh, Anderly C.
    Chan, F. Lyn
    Wong, Lee H.
    CHROMOSOME RESEARCH, 2009, 17 (04) : 542 - 542
  • [18] Neocentromeres and alpha satellite: a proposed structural code for functional human centromere DNA
    Koch, J
    HUMAN MOLECULAR GENETICS, 2000, 9 (02) : 149 - 154
  • [19] A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere
    Okamoto, Yasuhide
    Nakano, Megumi
    Ohzeki, Jun-ichirou
    Larionov, Vladimir
    Masumoto, Hiroshi
    EMBO JOURNAL, 2007, 26 (05): : 1279 - 1291
  • [20] A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA
    duSart, D
    Cancilla, MR
    Earle, E
    Mao, JI
    Saffery, R
    Tainton, KM
    Kalitsis, P
    Martyn, J
    Barry, AE
    Choo, KHA
    NATURE GENETICS, 1997, 16 (02) : 144 - 153