Numerical analysis of heat/mass transfer and electrochemical reaction in an anode-supported flat-tube solid oxide fuel cell

被引:0
|
作者
Suzuki, Masayuki [1 ]
Shikazono, Naoki [1 ]
Fukagata, Koji [1 ]
Kasagi, Nobuhide [1 ]
机构
[1] Univ Tokyo, Dept Mech Engn, Bunkyo Ku, Tokyo 1138656, Japan
来源
Proceedings of the 4th International Conference on Fuel Cell Science, Engineering, and Technology, Pts A and B | 2006年
关键词
solid oxide fuel cell; simulation; heat and mass transfer; electrochemical reaction; modeling;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Three-dimensional heat and mass transfer and electrochemical reaction in an anode-supported flat-tube solid oxide fuel cell (FF-SOFC) are studied. Transport and reaction phenomena mainly change in the streamwise direction. Exceptionally, hydrogen and water vapor have large concentration gradients also in the cross section perpendicular to the flow direction, because of the insufficient mass diffusion in the porous anode. Based on these results, we develop a simplified one-dimensional cell model. The distributions of temperature, current, and overpotential predicted by this model show good agreement with those obtained by the full three-dimensional simulation. We also investigate the effects of pore size, porosity and configuration of the anode on the cell performance. Extensive parametric studies reveal that, for a fixed three-phase boundary (TPB) length, rough material grains are preferable to obtain higher output voltage. In addition, when the cell has a thin anode with narrow ribs, drastic increase in the volumetric power density can be achieved with small voltage drop.
引用
收藏
页码:595 / 603
页数:9
相关论文
共 50 条
  • [41] The effect of mass transfer on electrochemical impedance of a solid oxide fuel cell anode
    Mohammadi, Rafat
    Ghassemi, Majid
    Barzi, Y. Mollayi
    Pirkandi, Jamasb
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (10) : 2815 - 2827
  • [42] The effect of mass transfer on electrochemical impedance of a solid oxide fuel cell anode
    Rafat Mohammadi
    Majid Ghassemi
    Y. Mollayi Barzi
    Jamasb Pirkandi
    Journal of Solid State Electrochemistry, 2014, 18 : 2815 - 2827
  • [43] Effect of the cathode structure on the electrochemical performance of anode-supported solid oxide fuel cells
    Li, Junliang
    wang, Shaorong
    Wang, Zhenrong
    Qian, Jiqin
    Liu, Renzhu
    Wen, Tinglian
    Wen, Zhaoyin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (04) : 579 - 583
  • [44] Electrochemical analysis for anode-supported microtubular solid oxide fuel cells in partial reducing and oxidizing conditions
    Sumi, Hirofumi
    Yamaguchi, Toshiaki
    Hamamoto, Koichi
    Suzuki, Toshio
    Fujishiro, Yoshinobu
    SOLID STATE IONICS, 2014, 262 : 407 - 410
  • [45] Effect of the cathode structure on the electrochemical performance of anode-supported solid oxide fuel cells
    Junliang Li
    Shaorong wang
    Zhenrong Wang
    Jiqin Qian
    Renzhu Liu
    Tinglian Wen
    Zhaoyin Wen
    Journal of Solid State Electrochemistry, 2010, 14 : 579 - 583
  • [46] Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells
    Leonide, A.
    Sonn, V.
    Weber, A.
    Ivers-Tiffee, E.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) : B36 - B41
  • [47] Optimization of Cathode Structure for Anode-Supported Planar Solid Oxide Fuel Cell
    Fan, Shengliang
    Wang, Guoli
    Yang, Lei
    Liu, Pengwei
    Han, Xu
    Jin, Zunlong
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2022, 19 (02)
  • [48] Novel asymmetric anode-supported hollow fiber solid oxide fuel cell
    Zhou, Dixiong
    Peng, Shujun
    Wei, Yanying
    Li, Zhong
    Wang, Haihui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 523 : 134 - 138
  • [49] Flow Channel Configurations of an Anode-Supported Honeycomb Solid Oxide Fuel Cell
    Kotake, Shota
    Nakajima, Hironori
    Kitahara, Tatsumi
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 815 - 822
  • [50] Dynamic modelling and control of planar anode-supported solid oxide fuel cell
    Chaisantikulwat, A.
    Diaz-Goano, C.
    Meadows, E. S.
    COMPUTERS & CHEMICAL ENGINEERING, 2008, 32 (10) : 2365 - 2381