Flow selections for (nonlinear) Fokker-Planck-Kolmogorov equations

被引:2
|
作者
Rehmeier, Marco [1 ]
机构
[1] Bielefeld Univ, Universitatsstr 25, D-33615 Bielefeld, NRW, Germany
关键词
Fokker-Planck equation; Cauchy problem; Solution flow; PARABOLIC EQUATIONS; UNIQUENESS;
D O I
10.1016/j.jde.2022.04.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a method to select flows of solutions to the Cauchy problem for linear and nonlinear Fokker- Planck-Kolmogorov equations (FPK equations) for measures on Euclidean space. In the linear case, our method improves similar results of a previous work of the author. Our consideration of flow selections for nonlinear equations, including the particularly interesting case of Nemytskii-type coefficients, seems to be new. We also characterize the (restricted) well-posedness of FPK equations by the uniqueness of such (restricted) flows. Moreover, we show that under suitable assumptions in the linear case such flows are Markovian, i.e. they fulfill the Chapman-Kolmogorov equations.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:105 / 132
页数:28
相关论文
共 50 条
  • [21] Convergence in variation of solutions of nonlinear Fokker-Planck-Kolmogorov equations to stationary measures
    Bogachev, Vladimir, I
    Roeckner, Michael
    Shaposhnikov, Stanislav, V
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (12) : 3681 - 3713
  • [22] Distances between transition probabilities of diffusions and applications to nonlinear Fokker-Planck-Kolmogorov equations
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (05) : 1262 - 1300
  • [23] Estimates for Solutions to Fokker-Planck-Kolmogorov Equations with Integrable Drifts
    Bogachev, V. I.
    Shaposhnikov, A. V.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (03) : 559 - 563
  • [24] On Sobolev Classes Containing Solutions to Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Popova, S. N.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 498 - 501
  • [25] Uniqueness of probability solutions to nonlinear Fokker-Planck-Kolmogorov equation
    O. A. Manita
    M. S. Romanov
    S. V. Shaposhnikov
    Doklady Mathematics, 2015, 91 : 142 - 146
  • [26] Fokker-Planck-Kolmogorov equations with a partially degenerate diffusion matrix
    Manita, O. A.
    Romanov, M. S.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2017, 96 (01) : 384 - 388
  • [27] DISTANCES BETWEEN STATIONARY DISTRIBUTIONS OF DIFFUSIONS AND SOLVABILITY OF NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS
    Bogachev, V. I.
    Kirillov, A. I.
    Shaposhnikov, S. V.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2018, 62 (01) : 12 - 34
  • [28] Superposition Principle for the Fokker-Planck-Kolmogorov Equations with Unbounded Coefficients
    Krasovitskii, T. I.
    Shaposhnikov, S. V.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2022, 56 (04) : 282 - 298
  • [29] Fractional Fokker-Planck-Kolmogorov equations with Holder continuous drift
    Tian, Rongrong
    Wei, Jinlong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (05) : 2456 - 2481
  • [30] Uniqueness of probability solutions to nonlinear Fokker-Planck-Kolmogorov equation
    Manita, O. A.
    Romanov, M. S.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2015, 91 (02) : 142 - 146