Silica-based Janus nanosheets for self-healing nanocomposite hydrogels

被引:10
|
作者
Li, Mengnan [1 ]
Li, Xiuli [1 ]
Li, Chunyu [1 ]
Liu, Hongchen [1 ]
Wang, Wenxiang [1 ]
Bai, Liangjiu [1 ]
Chen, Hou [1 ]
Yang, Lixia [1 ]
机构
[1] Ludong Univ, Sch Chem & Mat Sci, Key Lab High Performance & Funct Polymer Univ Sha, Collaborat Innovat Ctr Shandong Prov High Perform, Yantai, Peoples R China
基金
中国国家自然科学基金;
关键词
Janus nanosheet; Self-healing; Hydrogels; Pickering emulsion; DOUBLE-NETWORK HYDROGELS; PICKERING EMULSIONS; NANOPARTICLES; BONDS; TOUGH; PERFORMANCE; POLYDOPAMINE; ADHESIVE; STRENGTH; ACID);
D O I
10.1016/j.eurpolymj.2021.110580
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
As functional nanocomposites, Janus nanomaterials can play an important role due to their asymmetric structure and different components on the same surface. In this manuscript, hollow silicon spheres (SiO2 JHs) with an asymmetric structure were prepared by an emulsion interfacial self-organized sol-gel process. Inspired by mussel chemistry, the exposed surfaces of the SiO2 JHs were modified chemically by polydopamine (PDA). 2-(3-(6Methyl-4-oxo-1,2,3,4-tetrahydropyrimidin-2-yl)ureido)ethyl methacrylate (MAUPy) containing multiple hydrogen bond groups were grafted to obtain SiO2@PDA/PMAUPy Janus Nanosheets (SiO2@PDA/PMAUPy JNs) by Pickering emulsion. The prepared SiO2@PDA/PMAUPy JNs were further applied to prepare nanocomposite self-healing hydrogels. As a result of the synergy of reversible non-covalent metal-ligand and hydrogen bonding, hydrogels with dual self-healing feature were successfully fabricated. The obtained hydrogels maintain preferable mechanical properties (strain of about 411.0% and stress of about 4.1 MPa) and excellent healing ratio (92.6%), which may have broad application prospects in smart flexible sensor and biomedical application.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Surface modification of graphene oxide for preparing self-healing nanocomposite hydrogels
    Ceper, Ezgi B.
    Su, Esra
    Okay, Oguz
    Guney, Orhan
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2022, 33 (07) : 2276 - 2288
  • [22] Self-healing zwitterionic sulfobetaine nanocomposite hydrogels with good mechanical properties
    Lin, Yinlei
    Zeng, Zheng
    Li, Yuhao
    Sun, Sheng
    Liu, Xiaoting
    He, Deliu
    Li, Guangji
    RSC ADVANCES, 2019, 9 (55) : 31806 - 31811
  • [23] Enhancement of Self-Healing Efficacy of Conductive Nanocomposite Hydrogels by Polysaccharide Modifiers
    Tomic, Natasa Z.
    Ghodhbane, Myriam
    Matouk, Zineb
    AlShehhi, Nujood
    Busa, Chiara
    POLYMERS, 2023, 15 (03)
  • [24] Stretchable and self-healing photoelectrochemical photodetectors based on Ti2CTx nanosheets hydrogels
    Fan, Jinlin
    Liu, Yundan
    Guo, Zixuan
    Ji, Yuan
    Huang, Zongyu
    Bo, Zengjie
    Qiao, Hui
    Bao, Qiaoliang
    Qi, Xiang
    APPLIED MATERIALS TODAY, 2025, 42
  • [25] Self-healing protein hydrogels
    Chen, Jun
    Ma, Xiaoyu
    Lei, Yu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [26] Rapid self-healing hydrogels
    Phadke, Ameya
    Zhang, Chao
    Arman, Bedri
    Hsu, Cheng-Chih
    Mashelkar, Raghunath A.
    Lele, Ashish K.
    Tauber, Michael J.
    Arya, Gaurav
    Varghese, Shyni
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (12) : 4383 - 4388
  • [27] Research Progress of Self-Healing Hydrogels Based on Dopamine
    Huang, Jinxin
    Wu, Chengwei
    Yu, Xiaogang
    Ma, Jianli
    Zhang, Wei
    Cailiao Daobao/Materials Reports, 2022, 36 (08):
  • [28] Injectable, adhesive, self-healing and conductive hydrogels based on MXene nanosheets for spinal cord injury repair
    Yu, Qiuning
    Jin, Shicun
    Wang, Shaochi
    Xiao, Huining
    Zhao, Yanteng
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [29] Notch insensitive and self-healing PNIPAm-PAM-clay nanocomposite hydrogels
    Wang, Tao
    Zheng, Shudian
    Sun, Weixiang
    Liu, Xinxing
    Fu, Shiyu
    Tong, Zhen
    SOFT MATTER, 2014, 10 (19) : 3506 - 3512
  • [30] Self-healing hydrogels based on biological macromolecules in wound healing: A review
    Yang, Pu
    Li, Zhen
    Fang, Bairong
    Liu, Liangle
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253