ON INVARIANT MEASURES ASSOCIATED WITH WEAKLY COUPLED SYSTEMS OF KOLMOGOROV EQUATIONS

被引:0
|
作者
Addona, Davide [1 ]
Angiuli, Luciana [2 ]
Lorenzi, Luca [3 ]
机构
[1] Univ Ferrara, Dipartimento Matemat & Informat, Ferrara, Italy
[2] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, Lecce, Italy
[3] Univ Parma, Dipartimento Sci Matemat Fis & Informat, Plesso Matemat & Informat, Parma, Italy
关键词
PARABOLIC PROBLEMS; OPERATORS; COMPACTNESS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with weakly coupled elliptic systems A with unbounded coefficients. We prove the existence and characterize all the systems of invariant measures for the semigroup (T(t))(t >= 0) associated with A in C-b(R-d; R-m). We also show some relevant properties of the extension of (T(t))(t >= 0) to the L-P-spaces related to systems of invariant measures. Finally, we study the asymptotic behaviour of (T(t))(t >= 0) as t tends to +infinity.
引用
收藏
页码:137 / 184
页数:48
相关论文
共 50 条
  • [31] Singular perturbations of weakly coupled systems of Hamilton-Jacobi equations
    Camilli, Fabio
    Cesaroni, Annalisa
    ASYMPTOTIC ANALYSIS, 2009, 65 (3-4) : 125 - 146
  • [32] Invariant and statistically weakly invariant sets of control systems
    Rodina, L. I.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2012, (02): : 3 - 164
  • [33] Hormander invariant operators and equations Kolmogorov-Fokker-Planck
    Lanconelli, Ermanno
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2008,
  • [34] Nonlinear Fokker-Planck-Kolmogorov Equations for Measures
    Shaposhnikov, Stanislav, V
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 367 - 379
  • [36] Invariant Measures for Stochastic Differential Equations
    Hong, Jialin
    Wang, Xu
    INVARIANT MEASURES FOR STOCHASTIC NONLINEAR SCHRODINGER EQUATIONS: NUMERICAL APPROXIMATIONS AND SYMPLECTIC STRUCTURES, 2019, 2251 : 31 - 61
  • [37] WEAKLY WANDERING SETS AND INVARIANT MEASURES FOR A GROUP OF TRANSFORMATIONS
    HAJIAN, A
    ITO, Y
    JOURNAL OF MATHEMATICS AND MECHANICS, 1969, 18 (12): : 1203 - &
  • [38] Weakly Invariant Sets of Hybrid Systems
    Kurzhanskii, A. B.
    Tochilin, P. A.
    DIFFERENTIAL EQUATIONS, 2008, 44 (11) : 1585 - 1594
  • [39] Weakly invariant sets of hybrid systems
    A. B. Kurzhanskii
    P. A. Tochilin
    Differential Equations, 2008, 44 : 1585 - 1594
  • [40] Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part
    Wenhui Chen
    Alessandro Palmieri
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70