Overconvergent series of rational functions and universal Laurent series

被引:8
|
作者
Mueller, J. [1 ]
Vlachou, V. [2 ]
Yavrian, A. [3 ]
机构
[1] Univ Trier, Fachbereich 4, D-54286 Trier, Germany
[2] Univ Patras, Dept Math, Patras 26500, Greece
[3] Armenian Natl Acad Sci, Inst Math, Yerevan 375019, Armenia
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2008年 / 104卷 / 1期
关键词
D O I
10.1007/s11854-008-0023-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, series of rational functions with fixed poles, which have restricted growth near the poles are considered. If they converge with a geometric rate on a continuum, a phenomenon of overconvergence takes place, in the sense that the convergence extends to a certain maximal domain. From this result, some properties of universal Laurent series are derived.
引用
收藏
页码:235 / 245
页数:11
相关论文
共 50 条