Multimodal image-to-image translation between domains with high internal variability

被引:6
|
作者
Wang, Jian [1 ]
Lv, Jiancheng [1 ]
Yang, Xue [1 ]
Tang, Chenwei [1 ]
Peng, Xi [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
基金
国家重点研发计划; 美国国家科学基金会;
关键词
GANs; Image translation; High internal variability; Catastrophic forgetting; Generator regulating;
D O I
10.1007/s00500-020-05073-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimodal image-to-image translation based on generative adversarial networks (GANs) shows suboptimal performance in the visual domains with high internal variability, e.g., translation from multiple breeds of cats to multiple breeds of dogs. To alleviate this problem, we recast the training procedure as modeling distinct distributions which are observed sequentially, for example, when different classes are encountered over time. As a result, the discriminator may forget about the previous target distributions, known as catastrophic forgetting, leading to non-/slow convergence. Through experimental observation, we found that the discriminator does not always forget the previously learned distributions during training. Therefore, we propose a novel generator regulating GAN (GR-GAN). The proposed method encourages the discriminator to teach the generator more effectively when it remembers more of the previously learned distributions, while discouraging the discriminator to guide the generator when catastrophic forgetting happens on the discriminator. Both qualitative and quantitative results show that the proposed method is significantly superior to the state-of-the-art methods in handling the image data that are with high variability.
引用
收藏
页码:18173 / 18184
页数:12
相关论文
共 50 条
  • [31] Guided Image Weathering using Image-to-Image Translation
    Chen, Yu
    Shen, I-Chao
    Chen, Bing-Yu
    PROCEEDINGS OF SIGGRAPH ASIA 2021 TECHNICAL COMMUNICATIONS, 2021,
  • [32] Correction to: Generative image completion with image-to-image translation
    Shuzhen Xu
    Qing Zhu
    Jin Wang
    Neural Computing and Applications, 2020, 32 : 17809 - 17809
  • [33] Unsupervised Image-to-Image Translation with Generative Prior
    Yang, Shuai
    Jiang, Liming
    Liu, Ziwei
    Loy, Chen Change
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 18311 - 18320
  • [34] Unsupervised Image-to-Image Translation with Style Consistency
    Lai, Binxin
    Wang, Yuan-Gen
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VI, 2024, 14430 : 322 - 334
  • [35] Image-to-Image Translation with Conditional Adversarial Networks
    Isola, Phillip
    Zhu, Jun-Yan
    Zhou, Tinghui
    Efros, Alexei A.
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5967 - 5976
  • [36] Breaking the Dilemma of Medical Image-to-image Translation
    Kong, Lingke
    Lian, Chenyu
    Huang, Detian
    Li, Zhenjiang
    Hu, Yanle
    Zhou, Qichao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [37] Random Reconstructed Unpaired Image-to-Image Translation
    Zhang, Xiaoqin
    Fan, Chenxiang
    Xiao, Zhiheng
    Zhao, Li
    Chen, Huiling
    Chang, Xiaojun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 3144 - 3154
  • [38] Research on Image-to-Image Translation with Capsule Network
    Ye, Jian
    Chang, Qing
    Jia, Xiaotian
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: THEORETICAL NEURAL COMPUTATION, PT I, 2019, 11727 : 141 - 151
  • [39] Edge Sensitive Unsupervised Image-to-Image Translation
    Akkaya, Ibrahim Batuhan
    Halici, Ugur
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [40] Zero-shot Image-to-Image Translation
    Parmar, Gaurav
    Singh, Krishna Kumar
    Zhang, Richard
    Li, Yijun
    Lu, Jingwan
    Zhu, Jun-Yan
    PROCEEDINGS OF SIGGRAPH 2023 CONFERENCE PAPERS, SIGGRAPH 2023, 2023,