Silicon quantum dot/crystalline silicon solar cells

被引:265
|
作者
Cho, Eun-Chel [1 ]
Park, Sangwook [1 ]
Hao, Xiaojing [1 ]
Song, Dengyuan [1 ]
Conibeer, Gavin [1 ]
Park, Sang-Cheol [2 ]
Green, Martin A. [1 ]
机构
[1] Univ New S Wales, Photovolta Ctr Excellence, Sydney, NSW 2052, Australia
[2] Samsung Adv Inst Technol, Yongin 446712, Gyunggi Do, South Korea
关键词
D O I
10.1088/0957-4484/19/24/245201
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silicon (Si) quantum dot (QD) materials have been proposed for 'all-silicon' tandem solar cells. In this study, solar cells consisting of phosphorus-doped Si QDs in a SiO2 matrix deposited on p-type crystalline Si substrates (c-Si) were fabricated. The Si QDs were formed by alternate deposition of SiO2 and silicon-rich SiOx with magnetron co-sputtering, followed by high-temperature annealing. Current tunnelling through the QD layer was observed from the solar cells with a dot spacing of 2 nm or less. To get the required current densities through the devices, the dot spacing in the SiO2 matrix had to be 2 nm or less. The open-circuit voltage was found to increase proportionally with reductions in QD size, which may relate to a bandgap widening effect in Si QDs or an improved heterojunction field allowing a greater split of the Fermi levels in the Si substrate. Successful fabrication of (n-type) Si QD/(p-type) c-Si photovoltaic devices is an encouraging step towards the realization of all-silicon tandem solar cells based on Si QD materials.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Proton damage in amorphous silicon/crystalline silicon heterojunction solar cells
    Scherff, M.
    Drzymalla, R.
    Goesse, R.
    Fahrner, W. R.
    Ferrara, M.
    Neitzert, H.
    Opitz-Coutureau, J.
    Denker, A.
    Stangl, R.
    Limata, B.
    Gialanella, L.
    Romano, M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (12) : G1117 - G1121
  • [32] Corrosion behavior of crystalline silicon solar cells
    Xiong, Huaping
    Gan, Chuanhai
    Yang, Xiaobing
    Hu, Zhigang
    Niu, Haiyan
    Li, Jianfeng
    Si, Jianfang
    Xing, Pengfei
    Luo, Xuetao
    MICROELECTRONICS RELIABILITY, 2017, 70 : 49 - 58
  • [33] Recombination in compensated crystalline silicon for solar cells
    Macdonald, Daniel
    Cuevas, Andres
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (04)
  • [34] Metallization of crystalline silicon solar cells: A Review
    Ebong, Abasifreke
    Chen, Nian
    2012 9TH INTERNATIONAL CONFERENCE ON HIGH CAPACITY OPTICAL NETWORKS AND EMERGING/ENABLING TECHNOLOGIES (HONET), 2012, : 102 - 109
  • [35] Investigation of soldering for crystalline silicon solar cells
    Yang, Hong
    Wang, He
    Cao, Dingyue
    SOLDERING & SURFACE MOUNT TECHNOLOGY, 2016, 28 (04) : 222 - 226
  • [36] Passivating contacts for crystalline silicon solar cells
    Allen, Thomas G.
    Bullock, James
    Yang, Xinbo
    Javey, Ali
    De Wolf, Stefaan
    NATURE ENERGY, 2019, 4 (11) : 914 - 928
  • [37] Microchannel contacting of crystalline silicon solar cells
    James Bullock
    Hiroki Ota
    Hanchen Wang
    Zhaoran Xu
    Mark Hettick
    Di Yan
    Christian Samundsett
    Yimao Wan
    Stephanie Essig
    Monica Morales-Masis
    Andrés Cuevas
    Ali Javey
    Scientific Reports, 7
  • [38] Crystalline silicon solar cells with high efficiency
    Glunz, Stefan W. (stefan.glunz@ise.fraunhofer.de), 1600, Royal Society of Chemistry (2014-January):
  • [39] Substrates for thin crystalline silicon solar cells
    Blakers, AW
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 51 (3-4) : 385 - 392
  • [40] Recent progress in crystalline silicon solar cells
    Tanaka, Makoto
    IEICE ELECTRONICS EXPRESS, 2013, 10 (16):