Multi-Scale Graph-Based Feature Fusion for Few-Shot Remote Sensing Image Scene Classification

被引:10
|
作者
Jiang, Nan [1 ]
Shi, Haowen [1 ]
Geng, Jie [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
few-shot learning; graph-based feature; multi-scale feature fusion; remote sensing image scene classification; REPRESENTATION; RECOGNITION;
D O I
10.3390/rs14215550
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote sensing image scene classification has drawn extensive attention for its wide application in various scenarios. Scene classification in many practical cases faces the challenge of few-shot conditions. The major difficulty of few-shot remote sensing image scene classification is how to extract effective features from insufficient labeled data. To solve these issues, a multi-scale graph-based feature fusion (MGFF) model is proposed for few-shot remote sensing image scene classification. In the MGFF model, a graph-based feature construction model is developed to transform traditional image features into graph-based features, which aims to effectively represent the spatial relations among images. Then, a graph-based feature fusion model is proposed to integrate graph-based features of multiple scales, which aims to enhance sample discrimination based on different scale information. Experimental results on two public remote sensing datasets prove that the MGFF model can achieve superior accuracy than other few-shot scene classification approaches.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] A Progressive Multi-Scale Relation Network for Few-Shot Image Classification
    Tong, Le
    Zhu, Renchaoli
    Li, Tianjiu
    Li, Xinran
    Zhou, Xiaoping
    IEEE ACCESS, 2024, 12 : 157039 - 157049
  • [32] Few-Shot Scene Classification With Multi-Attention Deepemd Network in Remote Sensing
    Yuan, Zhengwu
    Huang, Wendong
    Li, Lin
    Luo, Xiaobo
    IEEE ACCESS, 2021, 9 : 19891 - 19901
  • [33] Few-shot remote sensing image scene classification based on multiscale covariance metric network (MCMNet)
    Chen, Xiliang
    Zhu, Guobin
    Liu, Mingqing
    Chen, Zhaotong
    NEURAL NETWORKS, 2023, 163 : 132 - 145
  • [34] Few-shot Image Classification Algorithm Based on Multi-scale Attention and Residual Network
    Wang, Qi
    Jin, Huazhong
    Yan, Meng
    Li, Lin
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 641 - 645
  • [35] Multi-Scale Decision Network With Feature Fusion and Weighting for Few-Shot Learning
    Wang, Xiaoru
    Ma, Bing
    Yu, Zhihong
    Li, Fu
    Cai, Yali
    IEEE ACCESS, 2020, 8 : 92172 - 92181
  • [36] A Multi-Layer Feature Fusion Method for Few-Shot Image Classification
    Gomes, Jaco C.
    Borges, Lurdineide de A. B.
    Borges, Dibio L.
    SENSORS, 2023, 23 (15)
  • [37] FGRMNet: Fully graph relational matching network for few-shot remote sensing scene classification
    Regan, Jacob
    Khodayar, Mahdi
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 274
  • [38] Multi-scale feature network for few-shot learning
    Mengya Han
    Ronggui Wang
    Juan Yang
    Lixia Xue
    Min Hu
    Multimedia Tools and Applications, 2020, 79 : 11617 - 11637
  • [39] Multi-scale feature network for few-shot learning
    Han, Mengya
    Wang, Ronggui
    Yang, Juan
    Xue, Lixia
    Hu, Min
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (17-18) : 11617 - 11637
  • [40] Graph-Based Domain Adaptation Few-Shot Learning for Hyperspectral Image Classification
    Xu, Yanbing
    Zhang, Yanmei
    Yue, Tingxuan
    Yu, Chengcheng
    Li, Huan
    REMOTE SENSING, 2023, 15 (04)