Multi-Scale Graph-Based Feature Fusion for Few-Shot Remote Sensing Image Scene Classification

被引:10
|
作者
Jiang, Nan [1 ]
Shi, Haowen [1 ]
Geng, Jie [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
few-shot learning; graph-based feature; multi-scale feature fusion; remote sensing image scene classification; REPRESENTATION; RECOGNITION;
D O I
10.3390/rs14215550
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote sensing image scene classification has drawn extensive attention for its wide application in various scenarios. Scene classification in many practical cases faces the challenge of few-shot conditions. The major difficulty of few-shot remote sensing image scene classification is how to extract effective features from insufficient labeled data. To solve these issues, a multi-scale graph-based feature fusion (MGFF) model is proposed for few-shot remote sensing image scene classification. In the MGFF model, a graph-based feature construction model is developed to transform traditional image features into graph-based features, which aims to effectively represent the spatial relations among images. Then, a graph-based feature fusion model is proposed to integrate graph-based features of multiple scales, which aims to enhance sample discrimination based on different scale information. Experimental results on two public remote sensing datasets prove that the MGFF model can achieve superior accuracy than other few-shot scene classification approaches.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Multi-scale fusion for few-shot remote sensing image classification
    Qiao, Xujian
    Xing, Lei
    Han, Anxun
    Liu, Weifeng
    Liu, Baodi
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (19) : 6012 - 6032
  • [2] Few-shot remote sensing scene classification based on multi subband deep feature fusion
    Yang, Song
    Wang, Huibin
    Gao, Hongmin
    Zhang, Lili
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 12889 - 12907
  • [3] MULTI-SCALE INTERACTION PROTOTYPICAL NETWORK FOR FEW-SHOT REMOTE SENSING SCENE CLASSIFICATION
    Pei, Shiji
    Wang, Yijing
    Ma, Jingjing
    Tang, Xu
    Yang, Yuqun
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6231 - 6234
  • [4] Graph-Based Embedding Smoothing Network for Few-Shot Scene Classification of Remote Sensing Images
    Yuan, Zhengwu
    Huang, Wendong
    Tang, Chan
    Yang, Aixia
    Luo, Xiaobo
    REMOTE SENSING, 2022, 14 (05)
  • [5] Prototype Calibration with Feature Generation for Few-Shot Remote Sensing Image Scene Classification
    Zeng, Qingjie
    Geng, Jie
    Huang, Kai
    Jiang, Wen
    Guo, Jun
    REMOTE SENSING, 2021, 13 (14)
  • [6] SGMNet: Scene Graph Matching Network for Few-Shot Remote Sensing Scene Classification
    Zhang, Baoquan
    Feng, Shanshan
    Li, Xutao
    Ye, Yunming
    Ye, Rui
    Luo, Chen
    Jiang, Hao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] SAFFNet: Self-Attention-Based Feature Fusion Network for Remote Sensing Few-Shot Scene Classification
    Kim, Joseph
    Chi, Mingmin
    REMOTE SENSING, 2021, 13 (13)
  • [8] Few-shot based learning recaptured image detection with multi-scale feature fusion and attention☆
    Hussain, Israr
    Tan, Shunquan
    Huang, Jiwu
    PATTERN RECOGNITION, 2025, 161
  • [9] Multi-scale Remote Sensing Image Classification Based on Weighted Feature Fusion
    Cheng Yinzhu
    Liu Song
    Wang Nan
    Shi Yuetian
    Zhang Geng
    ACTA PHOTONICA SINICA, 2023, 52 (11)
  • [10] Improved Remote Sensing Image Classification Based on Multi-Scale Feature Fusion
    Zhang, Chengming
    Chen, Yan
    Yang, Xiaoxia
    Gao, Shuai
    Li, Feng
    Kong, Ailing
    Zu, Dawei
    Sun, Li
    REMOTE SENSING, 2020, 12 (02)