The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections

被引:149
|
作者
Cos, Josep [1 ]
Doblas-Reyes, Francisco [1 ,2 ]
Jury, Martin [1 ,3 ]
Marcos, Raul [1 ]
Bretonniere, Pierre-Antoine [1 ]
Samso, Margarida [1 ]
机构
[1] Barcelona Supercomp Ctr BSC, Earth Sci Dept, Barcelona, Spain
[2] Inst Catalana Recerca & Estudis Avancats ICREA, Barcelona, Spain
[3] Karl Franzens Univ Graz, Wegener Ctr Climate & Global Change, Graz, Austria
基金
欧盟地平线“2020”;
关键词
LARGE ENSEMBLES; MULTIMODEL; MODELS; PRECIPITATION; CONSTRAINTS; SCENARIO; DATASET; LAND;
D O I
10.5194/esd-13-321-2022
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The enhanced warming trend and precipitation decline in the Mediterranean region make it a climate change hotspot. We compare projections of multiple Coupled Model Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6) historical and future scenario simulations to quantify the impacts of the already changing climate in the region. In particular, we investigate changes in temperature and precipitation during the 21st century following scenarios RCP2.6, RCP4.5 and RCP8.5 for CMIP5 and SSP1-2.6, SSP2-4.5 and SSP5-8.5 from CMIP6, as well as for the HighResMIP high-resolution experiments. A model weighting scheme is applied to obtain constrained estimates of projected changes, which accounts for historical model performance and inter-independence in the multi-model ensembles, using an observational ensemble as reference. Results indicate a robust and significant warming over the Mediterranean region during the 21st century over all seasons, ensembles and experiments. The temperature changes vary between CMIPs, CMIP6 being the ensemble that projects a stronger warming. The Mediterranean amplified warming with respect to the global mean is mainly found during summer. The projected Mediterranean warming during the summer season can span from 1.83 to 8.49 degrees C in CMIP6 and 1.22 to 6.63 degrees C in CMIP5 considering three different scenarios and the 50 % of inter-model spread by the end of the century. Contrarily to temperature projections, precipitation changes show greater uncertainties and spatial heterogeneity. However, a robust and significant precipitation decline is projected over large parts of the region during summer by the end of the century and for the high emission scenario (-49 % to -16 % in CMIP6 and -47 % to -22 % in CMIP5). While there is less disagreement in projected precipitation than in temperature between CMIP5 and CMIP6, the latter shows larger precipitation declines in some regions. Results obtained from the model weighting scheme indicate larger warming trends in CMIP5 and a weaker warming trend in CMIP6, thereby reducing the difference between the multi-model ensemble means from 1.32 degrees C before weighting to 0.68 degrees C after weighting.
引用
收藏
页码:321 / 340
页数:20
相关论文
共 50 条
  • [31] A comparison of CMIP6 and CMIP5 projections for precipitation to observational data: the case of Northeastern Iran
    Yasin Zamani
    Seyed Arman Hashemi Monfared
    Mehdi Azhdari moghaddam
    Mohsen Hamidianpour
    Theoretical and Applied Climatology, 2020, 142 : 1613 - 1623
  • [32] Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6
    Zhu, Huanhuan
    Jiang, Zhihong
    Li, Laurent
    SCIENCE BULLETIN, 2021, 66 (24) : 2528 - 2537
  • [33] Correction to: Model uncertainties in climate change impacts on Sahel precipitation in ensembles of CMIP5 and CMIP6 simulations
    Paul-Arthur Monerie
    Caroline M. Wainwright
    Moussa Sidibe
    Akintomide Afolayan Akinsanola
    Climate Dynamics, 2020, 55 : 2309 - 2310
  • [34] Comparison of CMIP5 and CMIP6 GCM performance for flood projections in the Mekong River Basin
    Try, Sophal
    Tanaka, Shigenobu
    Tanaka, Kenji
    Sayama, Takahiro
    Khujanazarov, Temur
    Oeurng, Chantha
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2022, 40
  • [35] Impacts of GCM credibility on hydropower production robustness under climate change: CMIP5 vs CMIP6
    Guo, Yuxue
    Xu, Yue-Ping
    Yu, Xinting
    Xie, Jingkai
    Chen, Hao
    Si, Yuan
    JOURNAL OF HYDROLOGY, 2023, 618
  • [36] A comparison of CMIP6 and CMIP5 projections for precipitation to observational data: the case of Northeastern Iran
    Zamani, Yasin
    Hashemi Monfared, Seyed Arman
    Azhdari Moghaddam, Mehdi
    Hamidianpour, Mohsen
    THEORETICAL AND APPLIED CLIMATOLOGY, 2020, 142 (3-4) : 1613 - 1623
  • [37] Emergent constraints on equilibrium climate sensitivity in CMIP5: do they mid for CMIP6?
    Schlund, Manuel
    Lauer, Axel
    Gentine, Pierre
    Sherwood, Steven C.
    Eyring, Veronika
    EARTH SYSTEM DYNAMICS, 2020, 11 (04) : 1233 - 1258
  • [38] Blocking Simulations in GFDL GCMs for CMIP5 and CMIP6
    Liu, Ping
    Reed, Kevin A.
    Garner, Stephen T.
    Zhao, Ming
    Zhu, Yuejian
    JOURNAL OF CLIMATE, 2022, 35 (15) : 5053 - 5070
  • [39] Time Variability Correction of CMIP6 Climate Change Projections
    Shao, Y.
    Bishop, C. H.
    Hobeichi, S.
    Nishant, N.
    Abramowitz, G.
    Sherwood, S.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (02)
  • [40] Contributions to Polar Amplification in CMIP5 and CMIP6 Models
    Hahn, L. C.
    Armour, K. C.
    Zelinka, M. D.
    Bitz, C. M.
    Donohoe, A.
    FRONTIERS IN EARTH SCIENCE, 2021, 9