Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: A first-principles study

被引:65
|
作者
Cai, Haifang [1 ,2 ]
Guo, Yufeng [1 ,2 ,3 ]
Gao, Huajian [3 ]
Guo, Wanlin [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, MOE Key Lab Intelligent Nano Mat & Devices, Nanjing 210016, Jiangsu, Peoples R China
[3] Brown Univ, Sch Engn, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Tribo-piezoelectricity; Janus TMD bilayer; First-principles calculations; Nanogenerator; TRIBOELECTRIC NANOGENERATORS; ENERGY-CONVERSION; LAYER MOS2; NANOWIRE; PERFORMANCE; GENERATION; ELECTRONICS; EFFICIENCY;
D O I
10.1016/j.nanoen.2018.11.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Semiconducting Janus transition metal dichalcogenides (TMDs) are attractive for application in nanoscale electricity harvesting devices as their strong out-of-plane piezoelectricity. Here our extensive first-principles calculations reveal that in-plane interlayer sliding of Janus MXY (M = Mo or W, X/Y = S, Se, or Te, and X not equal Y) bilayers would lead to significant enhancement of vertical piezoelectricity. The tribo-piezoelectric transduction mechanism is elucidated by tribological energy conversion of Janus TMD bilayers overcoming interlayer sliding resistance to reach the A-A stacking states that have the strongest out-of-plane piezoelectricity. Reducing interlayer distances of Janus TMD bilayers increases sliding energy barriers, and accordingly improves vertical charge polarization and inductive voltage generated between the top and bottom surfaces of Janus TMD bilayers. Based on the presented tribo-piezoelectricity, a compression-sliding design strategy is proposed for Janus TMD bilayers to create novel nanogenerators.
引用
收藏
页码:33 / 39
页数:7
相关论文
共 50 条
  • [31] High piezoelectricity Janus GaXI (X = S, Se, or Te): First-principles calculations
    Li, Zujun
    Luo, Jiasheng
    Ling, Haojun
    Chen, Jiawei
    Wen, Minru
    Dong, Huafeng
    Wu, Fugen
    SOLID STATE COMMUNICATIONS, 2024, 391
  • [32] A first-principles study on the electronic structure of the first transition metal phthalocyanines
    Li, Qun-Xiang
    Yang, Jin-Long
    Li, Zhen-Yu
    Hou, Jian-Guo
    Zhu, Qing-Shi
    1882, Science Press (50):
  • [33] A first-principles study on the electronic structure of the first transition metal phthalocyanines
    Li, QX
    Yang, JL
    Li, ZY
    Hou, JG
    Zhu, QS
    ACTA PHYSICA SINICA, 2001, 50 (10) : 1877 - 1883
  • [34] Structural and electronic properties of 2H phase Janus transition metal dichalcogenide bilayers
    Yang, Yi
    Zhang, Yunzhen
    Ye, Han
    Yu, Zhongyuan
    Liu, Yumin
    Su, Bida
    Xu, Wenbin
    SUPERLATTICES AND MICROSTRUCTURES, 2019, 131 : 8 - 14
  • [35] Non-Noble Metal Incorporated Transition Metal Dichalcogenide Monolayers for Electrochemical CO2 Reduction: A First-Principles Study
    Pu, Mingjie
    Guo, Wanlin
    Guo, Yufeng
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (50) : 58388 - 58396
  • [36] Tunable Electronic Properties of Two-Dimensional Transition Metal Dichalcogenide Alloys: A First-Principles Prediction
    Xi, Jinyang
    Zhao, Tianqi
    Wang, Dong
    Shuai, Zhigang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (02): : 285 - 291
  • [37] First-principles study of hydrogen diffusion in transition metal palladium
    Sarantuya, Nasantogtokh
    Cui, Xin
    Wang, Zhi Ping
    MODERN PHYSICS LETTERS B, 2015, 29 (13):
  • [38] First-principles study on the NMR shielding of transition metal semiconductors
    Xu, Chen
    Xiang, Yunfei
    Shi, Chenglong
    SOLID STATE COMMUNICATIONS, 2023, 366
  • [39] First-principles study of hydrogen diffusion in transition metal Rhodium
    Bao, Wulijibilige
    Cui, Xin
    Wang, Zhi-Ping
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2014), 2015, 574
  • [40] Magic in twisted transition metal dichalcogenide bilayers
    Trithep Devakul
    Valentin Crépel
    Yang Zhang
    Liang Fu
    Nature Communications, 12