Amodal Instance Segmentation with KINS Dataset

被引:93
|
作者
Qi, Lu [1 ,2 ]
Jiang, Li [1 ,2 ]
Liu, Shu [2 ]
Shen, Xiaoyong [2 ]
Jia, Jiaya [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Tencent, YouTu Lab, Shenzhen, Peoples R China
关键词
D O I
10.1109/CVPR.2019.00313
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Amodal instance segmentation, a new direction of instance segmentation, aims to segment each object instance involving its invisible, occluded parts to imitate human ability. This task requires to reason objects' complex structure. Despite important and futuristic, this task lacks data with large-scale and detailed annotation, due to the difficulty of correctly and consistently labeling invisible parts, which creates the huge barrier to explore the frontier of visual recognition. In this paper, we augment KITTI with more instance pixel-level annotation for 8 categories, which we call KITTI INStance dataset (KINS). We propose the network structure to reason invisible parts via a new multi-task framework with Multi-Level Coding (MLC), which combines information in various recognition levels. Extensive experiments show that our MLC effectively improves both amodal and inmodal segmentation. The KINS dataset and our proposed method are made publicly available.
引用
收藏
页码:3009 / 3018
页数:10
相关论文
共 50 条
  • [31] A semi-supervised generative adversarial network for amodal instance segmentation of piglets in farrowing pens
    Huang, Endai
    He, Zheng
    Mao, Axiu
    Ceballos, Maria Camila
    Parsons, Thomas D.
    Liu, Kai
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 209
  • [32] Learning Semantics-aware Distance Map with Semantics Layering Network for Amodal Instance Segmentation
    Zhang, Ziheng
    Chen, Anpei
    Xie, Ling
    Yu, Jingyi
    Gao, Shenghua
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 2124 - 2132
  • [33] 2D Amodal Instance Segmentation Guided by 3D Shape Prior
    Li, Zhixuan
    Ye, Weining
    Jiang, Tingting
    Huang, Tiejun
    COMPUTER VISION, ECCV 2022, PT XXIX, 2022, 13689 : 165 - 181
  • [34] Automated detection and analysis of piglet suckling behaviour using high-accuracy amodal instance segmentation
    Gan, Haiming
    Ou, Mingqiang
    Li, Chengpeng
    Wang, Xiarui
    Guo, Jingfeng
    Mao, Axiu
    Ceballos, Maria Camila
    Parsons, Thomas D.
    Liu, Kai
    Xue, Yueju
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 199
  • [35] Camouflaged Instance Segmentation In-the-Wild: Dataset, Method, and Benchmark Suite
    Trung-Nghia Le
    Cao, Yubo
    Tan-Cong Nguyen
    Minh-Quan Le
    Khanh-Duy Nguyen
    Thanh-Toan Do
    Minh-Triet Tran
    Nguyen, Tam, V
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 287 - 300
  • [36] Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation
    Liu, Yun
    Wu, Yu-Huan
    Wen, Peisong
    Shi, Yujun
    Qiu, Yu
    Cheng, Ming-Ming
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (03) : 1415 - 1428
  • [37] MUVA: A New Large-Scale Benchmark for Multi-view Amodal Instance Segmentation in the Shopping Scenario
    Li, Zhixuan
    Ye, Weining
    Terven, Juan
    Bennett, Zachary
    Zheng, Ying
    Jiang, Tingting
    Huang, Tiejun
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 23447 - 23456
  • [38] The DeepFish computer vision dataset for fish instance segmentation, classification, and size estimation
    Garcia-d'Urso, Nahuel
    Galan-Cuenca, Alejandro
    Perez-Sanchez, Paula
    Climent-Perez, Pau
    Fuster-Guillo, Andres
    Azorin-Lopez, Jorge
    Saval-Calvo, Marcelo
    Guillen-Nieto, Juan Eduardo
    Soler-Capdepon, Gabriel
    SCIENTIFIC DATA, 2022, 9 (01)
  • [39] DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar
    Singer, Nina M.
    Asari, Vijayan K.
    IEEE ACCESS, 2021, 9 : 97495 - 97504
  • [40] ReSyRIS - A Real-Synthetic Rock Instance Segmentation Dataset for Training and Benchmarking
    Boerdijk, Wout
    Mueller, Marcus G.
    Durner, Maximilian
    Triebel, Rudolph
    2023 IEEE AEROSPACE CONFERENCE, 2023,