Amodal Instance Segmentation with KINS Dataset

被引:93
|
作者
Qi, Lu [1 ,2 ]
Jiang, Li [1 ,2 ]
Liu, Shu [2 ]
Shen, Xiaoyong [2 ]
Jia, Jiaya [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Tencent, YouTu Lab, Shenzhen, Peoples R China
关键词
D O I
10.1109/CVPR.2019.00313
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Amodal instance segmentation, a new direction of instance segmentation, aims to segment each object instance involving its invisible, occluded parts to imitate human ability. This task requires to reason objects' complex structure. Despite important and futuristic, this task lacks data with large-scale and detailed annotation, due to the difficulty of correctly and consistently labeling invisible parts, which creates the huge barrier to explore the frontier of visual recognition. In this paper, we augment KITTI with more instance pixel-level annotation for 8 categories, which we call KITTI INStance dataset (KINS). We propose the network structure to reason invisible parts via a new multi-task framework with Multi-Level Coding (MLC), which combines information in various recognition levels. Extensive experiments show that our MLC effectively improves both amodal and inmodal segmentation. The KINS dataset and our proposed method are made publicly available.
引用
收藏
页码:3009 / 3018
页数:10
相关论文
共 50 条
  • [1] Amodal Instance Segmentation
    Li, Ke
    Malik, Jitendra
    COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 : 677 - 693
  • [2] Layered Embeddings for Amodal Instance Segmentation
    Liu, Yanfeng
    Psota, Eric T.
    Perez, Lance C.
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I, 2019, 11662 : 102 - 111
  • [3] SAIL-VOS: Semantic Amodal Instance Level Video Object Segmentation - A Synthetic Dataset and Baselines
    Hu, Yuan-Ting X.
    Chen, Hong-Shuo
    Hui, Kexin
    Huang, Jia-Bin
    Schwing, Alexander
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3100 - 3110
  • [4] GIN: Generative INvariant Shape Prior for Amodal Instance Segmentation
    Li, Zhixuan
    Ye, Weining
    Jiang, Tingting
    Huang, Tiejun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3924 - 3936
  • [5] Amodal Instance Segmentation via Prior-Guided Expansion
    Chen, Junjie
    Niu, Li
    Zhang, Jianfu
    Si, Jianlou
    Qian, Chen
    Zhang, Liqing
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 313 - 321
  • [6] ShapeFormer: Shape Prior Visible-to-Amodal Transformer-based Amodal Instance Segmentation
    Tran, Minh (minht@uark.edu), 1600, Institute of Electrical and Electronics Engineers Inc.
  • [7] Amodal Cityscapes: A New Dataset, its Generation, and an Amodal Semantic Segmentation Challenge Baseline
    Breitenstein, Jasmin
    Fingscheidt, Tim
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1018 - 1025
  • [8] Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling
    Back, Seunghyeok
    Lee, Joosoon
    Kim, Taewon
    Noh, Sangjun
    Kang, Raeyoung
    Bak, Seongho
    Lee, Kyoobin
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 5085 - 5092
  • [9] LEARNING VECTOR QUANTIZED SHAPE CODE FOR AMODAL BLASTOMERE INSTANCE SEGMENTATION
    Jang, Won-Dong
    Wei, Donglai
    Zhang, Xingxuan
    Leahy, Brian
    Yang, Helen
    Tompkin, James
    Ben-Yosef, Dalit
    Needleman, Daniel
    Pfister, Hanspeter
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [10] Efficient virtual-to-real dataset synthesis for amodal instance segmentation of occlusion-aware rockfill material gradation detection
    Hu, Yike
    Wang, Jiajun
    Wang, Xiaoling
    Yu, Jia
    Zhang, Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238