Pre-Lie Groups in Abstract Differential Geometry

被引:0
|
作者
Papatriantafillou, M. H. [1 ]
机构
[1] Univ Athens, Dept Math, Athens 15784, Greece
关键词
Differential triad; Lie group; left-invariant vector field; adjoint representation;
D O I
10.1007/s00009-014-0416-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study groups with "differential structure" in the framework of Abstract Differential Geometry, an abstraction of the classical differential geometry of manifolds, via sheaf-theoretic methods, without ordinary calculus; the basic tool is the notion of a differential triad. First, we consider pre-Lie groups, i.e., semi-topological groups with compatible differential triads and we prove that such groups have "left-invariant vector fields" and "left-invariant derivations", behaving like the classical ones. Next, for every pre-Lie group, we define an appropriate Lie algebra and prove the existence of a naturally associated adjoint representation of the initial group into the latter.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 50 条
  • [11] Degenerations of pre-Lie algebras
    Benes, Thomas
    Burde, Dietrich
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (11)
  • [12] On Free Pre-Lie Algebras
    Li, Yu
    Mo, Qiuhui
    ALGEBRA COLLOQUIUM, 2017, 24 (02) : 267 - 284
  • [13] On the Lie enveloping algebra of a pre-Lie algebra
    Oudom, J. -M.
    Guin, D.
    JOURNAL OF K-THEORY, 2008, 2 (01) : 147 - 167
  • [14] Differential Geometry and Lie Groups for Physicists
    Donev, Stoil G.
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2006, 8 : 123 - 126
  • [15] LIE TRANSFORMATION GROUPS AND DIFFERENTIAL GEOMETRY
    HSIANG, WY
    LECTURE NOTES IN MATHEMATICS, 1987, 1255 : 34 - 52
  • [16] Simple Lie-Solvable Pre-Lie Algebras
    Zhelyabin, V. N.
    Pozhidaev, A. P.
    Umirbaev, U. U.
    ALGEBRA AND LOGIC, 2022, 61 (02) : 160 - 165
  • [17] Free pre-Lie family algebras
    Zhang, Yuanyuan
    Manchon, Dominique
    ANNALES DE L INSTITUT HENRI POINCARE D, 2024, 11 (02): : 331 - 361
  • [18] THE PRE-LIE OPERAD AS A DEFORMATION OF NAP
    Saiedi, Abdellatif
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (01)
  • [19] Simple Lie-Solvable Pre-Lie Algebras
    V. N. Zhelyabin
    A. P. Pozhidaev
    U. U. Umirbaev
    Algebra and Logic, 2022, 61 : 160 - 165
  • [20] On the Lie enveloping algebra of a pre-Lie algebra.
    Oudom, JM
    Guin, D
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (05) : 331 - 336