Development of a Data Analytics Platform for an Electrical/Water Microgrid

被引:0
|
作者
Jean-Pierre, Garry [1 ]
Akbarihaghighat, Hadi [1 ]
Zhao, Tian [1 ]
Berger, Adam [1 ]
Nafsin, Nabila [1 ]
Bin Nasir, Fuad [1 ]
Bravo, Hector [1 ]
Li, Jin [1 ]
Nasiri, Adel [1 ]
Nowak, Michael [2 ]
机构
[1] Univ Wisconsin Milwaukee UWM, Ctr Sustainable Elect Energy Syst, Milwaukee, WI 53211 USA
[2] Eaton Corp, Dublin, Ireland
关键词
Cloud storage; data analytic; HMI; KPI; microgrid;
D O I
10.1109/PEDG51384.2021.9494250
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Data enabled systems can offer multiple improvements over traditional systems, including higher efficiency, higher reliability, and lower maintenance cost. There has been a large growth in the development of data enabled systems in various industrial sectors, such as energy, manufacturing, and water distribution systems. In order to achieve a data enabled system, it is paramount to develop an analytical platform by collecting data, and formulating and monitoring key performance indicators (KPIs). This paper presents a multilayer structured communication and data analytic framework to collect real-time, high-fidelity data for a full scale electrical microgrid and water system testbed. The system has deployed various electrical and water sensors, communication interfaces, data streaming libraries, cloud programming and storage, data dashboards, and an HMI. Actual water and electrical test systems were built to test this replicable platform.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Towards a data analytics platform for technical data in Paranal observatory
    Pena, Eduardo
    Anania, Andres
    Pablo Gil, Juan
    Lizana, Vicente
    Burgos, Pablo
    Gonzalez, Rodrigo
    Munoz, Ingeborg
    Quiroz, Jorgue
    SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY VII, 2022, 12189
  • [22] Data integration in scalable data analytics platform for process industries
    Sarnovsky, M.
    Bednar, P.
    Smatana, M.
    2017 IEEE 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS (INES), 2017, : 187 - 192
  • [23] THE DYDAS - "DYNAMIC DATA ANALYTICS SERVICES" PLATFORM FOR HPC BIG DATA ANALYTICS OF EARTH OBSERVATION AND GEOSPATIAL DATA
    Picchiani, M.
    Maranesi, M.
    Mastrucci, M.
    Coltea, I. G.
    Pompei, G.
    Di Giacomo, L.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4011 - 4014
  • [24] Development of Power Quality Analysis Platform for INER Microgrid
    Su, H. J.
    Chang, G. W.
    Hsu, L. Y.
    Lu, H. J.
    Lee, Y. D.
    Chang, Y. R.
    Lin, J. H.
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [25] EnerGyan: A Portable Platform for Microgrid Education, Research, and Development
    Manur, Ashray
    Sehloff, David
    Venkataramanan, Giri
    2018 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS (PEDES), 2018,
  • [26] Scalable Data Analytics Platform for Enterprise Backup Management
    Song, Yang
    Routray, Ramani
    Hou, Yangyang
    2014 IEEE NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (NOMS), 2014,
  • [27] An Electronic Commerce Big Data Analytics Architecture and Platform
    Munshi, Amr
    Alhindi, Ahmad
    Qadah, Thamir M.
    Alqurashi, Amjad
    APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [28] The EPIC data analytics platform for clinical mass cytometry
    Wasser, Martin
    Yeo, Joo Guan
    Kumar, Pavanish
    Chew, Valerie
    Lim, Chun Jye
    Arkachaisri, Thaschawee
    Poh, Su Li
    Leong, Jing Yao
    Yeo, Kee Thai
    Albani, Salvatore
    JOURNAL OF IMMUNOLOGY, 2020, 204 (01):
  • [29] SMART TRANSPORTATION PLATFORM FOR BIG DATA ANALYTICS AND INTERCONNECTIVITY
    Verba, Nandor
    Chao, Kuo-Ming
    Linford, Soizic
    Anoyrkati, Eleni
    INTERNATIONAL CONFERENCE ON TRAFFIC AND TRANSPORT ENGINEERING (ICTTE 2018), 2018, : 232 - 238
  • [30] Joint Imaging Platform for Federated Clinical Data Analytics
    Scherer, Jonas
    Nolden, Marco
    Kleesiek, Jens
    Metzger, Jasmin
    Kades, Klaus
    Schneider, Verena
    Bach, Michael
    Sedlaczek, Oliver
    Bucher, Andreas M.
    Vogl, Thomas J.
    Gruenwald, Frank
    Kuehn, Jens-Peter
    Hoffmann, Ralf-Thorsten
    Kotzerke, Joerg
    Bethge, Oliver
    Schimmoeller, Lars
    Antoch, Gerald
    Mueller, Hans-Wilhelm
    Daul, Andreas
    Nikolaou, Konstantin
    la Fougere, Christian
    Kunz, Wolfgang G.
    Ingrisch, Michael
    Schachtner, Balthasar
    Ricke, Jens
    Bartenstein, Peter
    Nensa, Felix
    Radbruch, Alexander
    Umutlu, Lale
    Forsting, Michael
    Seifert, Robert
    Herrmann, Ken
    Mayer, Philipp
    Kauczor, Hans-Ulrich
    Penzkofer, Tobias
    Hamm, Bernd
    Brenner, Winfried
    Kloeckner, Roman
    Duber, Christoph
    Schreckenberger, Mathias
    Braren, Rickmer
    Kaissis, Georgios
    Makowski, Marcus
    Eiber, Matthias
    Gafita, Andrei
    Trager, Rupert
    Weber, Wolfgang A.
    Neubauer, Jakob
    Reisert, Marco
    Bock, Michael
    JCO CLINICAL CANCER INFORMATICS, 2020, 4 : 1027 - 1038