Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations

被引:282
|
作者
Fox-Kemper, B. [1 ,2 ]
Danabasoglu, G. [3 ]
Ferrari, R. [4 ]
Griffies, S. M. [5 ]
Hallberg, R. W. [5 ]
Holland, M. M. [3 ]
Maltrud, M. E. [6 ]
Peacock, S. [3 ]
Samuels, B. L. [5 ]
机构
[1] Univ Colorado, CIRES, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Atmospher & Ocean Sci ATOC, Boulder, CO 80309 USA
[3] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[4] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA
[5] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA
[6] Los Alamos Natl Lab, Los Alamos, NM USA
基金
美国国家科学基金会;
关键词
Submesoscale; Parameterization; Mixed layer; Boundary layer; Climate model; CALIFORNIA CURRENT SYSTEM; SUBMESOSCALE TRANSITION; PART II; PLANKTON DYNAMICS; FINITE-VOLUME; MESOSCALE; MODEL; CIRCULATION; SENSITIVITY; FORMULATION;
D O I
10.1016/j.ocemod.2010.09.002
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A parameterization for the restratification by finite-amplitude, submesoscale, mixed layer eddies, formulated as an overturning streamfunction, has been recently proposed to approximate eddy fluxes of density and other tracers. Here, the technicalities of implementing the parameterization in the coarse-resolution ocean component of global climate models are made explicit, and the primary impacts on model solutions of implementing the parameterization are discussed. Three global ocean general circulation models including this parameterization are contrasted with control simulations lacking the parameterization. The MLE parameterization behaves as expected and fairly consistently in models differing in discretization, boundary layer mixing, resolution, and other parameterizations. The primary impact of the parameterization is a shoaling of the mixed layer, with the largest effect in polar winter regions. Secondary impacts include strengthening the Atlantic meridional overturning while reducing its variability, reducing CFC and tracer ventilation, modest changes to sea surface temperature and air-sea fluxes, and an apparent reduction of sea ice basal melting. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:61 / 78
页数:18
相关论文
共 50 条
  • [31] Impact of observation -based snow albedo parameterization on global ocean simulation results
    Toyoda, Takahiro
    Aoki, Teruo
    Niwano, Masashi
    Tanikawa, Tomonori
    Urakawa, L. Shogo
    Tsujino, Hiroyuki
    Nakano, Hideyuki
    Sakamoto, Kei
    Hirose, Nariaki
    Yamanaka, Goro
    POLAR SCIENCE, 2020, 24
  • [32] Objective Determination of Global Ocean Surface Mixed Layer Depth
    Chu, Peter C.
    Fan, Chenwu
    OCEANS 2010, 2010,
  • [33] Commentary: On the inconsistency at the interface of climate impact studies and global climate simulations
    Claussen, M
    EARTH SYSTEMS ANALYSIS: INTEGRATING SCIENCE FOR SUSTAINABILITY - COMPLEMENTED RESULTS OF A SYMPOSIUM, 1998, : 273 - 276
  • [34] COUPLED SEA ICE MIXED LAYER SIMULATIONS FOR THE SOUTHERN-OCEAN
    STOSSEL, A
    LEMKE, P
    OWENS, WB
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1990, 95 (C6) : 9539 - 9555
  • [35] The Global Ocean Observing Component of IOOS: Implementation of the Initial Global Ocean Observing System for Climate and the Path Forward
    Levy, Joel M.
    Snowden, Derrick
    Clark, Candyce
    Crane, Kathleen
    Diamond, Howard J.
    Goodrich, David
    Johnson, Mike
    Miller, Christopher D.
    Murray, William
    Piotrowicz, Stephen R.
    Stanitski, Diane
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2011, 45 (01) : 9 - 18
  • [36] Parameterization of Langmuir Circulation in the Ocean Mixed Layer Model Using LES and Its Application to the OGCM
    Noh, Yign
    Ok, Hyejin
    Lee, Eunjeong
    Toyoda, Takahiro
    Hirose, Naoki
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2016, 46 (01) : 57 - 78
  • [37] Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations
    Yuchao Zhu
    Rong-Hua Zhang
    James N.Moum
    Fan Wang
    Xiaofeng Li
    Delei Li
    NationalScienceReview, 2022, 9 (08) : 167 - 174
  • [38] Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations
    Zhu, Yuchao
    Zhang, Rong-Hua
    Moum, James N.
    Wang, Fan
    Li, Xiaofeng
    Li, Delei
    NATIONAL SCIENCE REVIEW, 2022, 9 (08)
  • [39] Summer Season Squall-Line Simulations: Sensitivity of Gravity Waves to Physics Parameterization and Implications for Their Parameterization in Global Climate Models
    Stephan, Claudia
    Alexander, M. Joan
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2014, 71 (09) : 3376 - 3391
  • [40] Impact of model resolutions on Indian ocean simulations from Global NEMO Ocean Model
    Momin, I. M.
    Mitra, A. K.
    Mahapatra, D. K.
    Gera, A.
    Rajagopal, E. N.
    INDIAN JOURNAL OF GEO-MARINE SCIENCES, 2014, 43 (09) : 1667 - 1674