ML estimation for factor analysis: EM or non-EM?

被引:19
|
作者
Zhao, J. -H. [1 ,2 ]
Yu, Philip L. H. [1 ]
Jiang, Qibao [3 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[2] Yunnan Univ, Dept Stat, Kunming 650091, Peoples R China
[3] SE Univ, Dept Math, Nanjing 210096, Peoples R China
关键词
CM; ECME; EM; factor analysis; maximum likelihood estimation;
D O I
10.1007/s11222-007-9042-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To obtain maximum likelihood (ML) estimation in factor analysis (FA), we propose in this paper a novel and fast conditional maximization (CM) algorithm, which has quadratic and monotone convergence, consisting of a sequence of CM log-likelihood (CML) steps. The main contribution of this algorithm is that the closed form expression for the parameter to be updated in each step can be obtained explicitly, without resorting to any numerical optimization methods. In addition, a new ECME algorithm similar to Liu's (Biometrika 81, 633-648, 1994) one is obtained as a by-product, which turns out to be very close to the simple iteration algorithm proposed by Lawley (Proc. R. Soc. Edinb. 60, 64-82, 1940) but our algorithm is guaranteed to increase log-likelihood at every iteration and hence to converge. Both algorithms inherit the simplicity and stability of EM but their convergence behaviors are much different as revealed in our extensive simulations: (1) In most situations, ECME and EM perform similarly; (2) CM outperforms EM and ECME substantially in all situations, no matter assessed by the CPU time or the number of iterations. Especially for the case close to the well known Heywood case, it accelerates EM by factors of around 100 or more. Also, CM is much more insensitive to the choice of starting values than EM and ECME.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 50 条
  • [31] ML-ESTIMATION OF THE T-DISTRIBUTION USING EM AND ITS EXTENSIONS, ECM AND ECME
    LIU, CH
    RUBIN, DB
    STATISTICA SINICA, 1995, 5 (01) : 19 - 39
  • [32] Application and performance of an ML-EM algorithm in NEXT
    Simon, A.
    Lerche, C.
    Monrabal, F.
    Gomez-Cadenas, J. J.
    Alvarez, V.
    Azevedo, C. D. R.
    Benlloch-Rodriguez, J. M.
    Borges, F. I. G. M.
    Botas, A.
    Carcel, S.
    Carrion, J. V.
    Cebrian, S.
    Conde, C. A. N.
    Diaz, J.
    Diesburg, M.
    Escada, J.
    Esteve, R.
    Felkai, R.
    Fernandes, L. M. P.
    Ferrario, P.
    Ferreira, A. L.
    Freitas, E. D. C.
    Goldschmidt, A.
    Gonzalez-Diaz, D.
    Gutierrez, R. M.
    Hauptman, J.
    Henriques, C. A. O.
    Hernandez, A. I.
    Hernando Morata, J. A.
    Herrero, V.
    Jones, B. J. P.
    Labarga, L.
    Laing, A.
    Lebrun, P.
    Liubarsky, I.
    Lopez-March, N.
    Losada, M.
    Martin-Albo, J.
    Martinez-Lema, G.
    Martinez, A.
    McDonald, A. D.
    Monteiro, C. M. B.
    Mora, F. J.
    Moutinho, L. M.
    Munoz Vidal, J.
    Musti, M.
    Nebot-Guinot, M.
    Novella, P.
    Nygren, D. R.
    Palmeiro, B.
    JOURNAL OF INSTRUMENTATION, 2017, 12
  • [33] Range condition and ML-EM checkerboard artifacts
    You, Jiangsheng
    Wang, Jing
    Liang, Zhengrong
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2007, 54 (05) : 1696 - 1702
  • [34] Consistency Condition and ML-EM Checkerboard Artifacts
    You, Jiangsheng
    Wang, Jing
    Liang, Zhengrong
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 2245 - 2250
  • [35] The ML-EM Algorithm Is Not Optimal For Poisson Noise
    Zeng, Gengsheng L.
    2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2015,
  • [36] The ML-EM Algorithm is Not Optimal for Poisson Noise
    Zeng, Gengsheng L.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (05) : 2096 - 2101
  • [37] Comparative convergence analysis of EM and SAGE algorithms in DOA estimation
    Chung, PJ
    Böhme, JF
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (12) : 2940 - 2949
  • [38] Comparative convergence analysis of EM and SAGE algorithms in DOA estimation
    Chung, PJ
    Böhme, JF
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 2993 - 2996
  • [39] Analysis of Position Estimation Techniques in a Surgical EM Tracking System
    Attivissimo, Filippo
    Di Nisio, Attilio
    Lanzolla, Anna Maria Lucia
    Ragolia, Mattia Alessandro
    IEEE SENSORS JOURNAL, 2021, 21 (13) : 14389 - 14396
  • [40] Alternatives to the EM algorithm for ML estimation of location, scatter matrix, and degree of freedom of the Student t distribution
    Marzieh Hasannasab
    Johannes Hertrich
    Friederike Laus
    Gabriele Steidl
    Numerical Algorithms, 2021, 87 : 77 - 118