Study on a tuning-free network for the rf accelerating cavity

被引:1
|
作者
Sato, K
Rizawa, T
Saito, T
Tamura, H
Uraki, M
Yamamoto, M
Morii, Y
Hosono, K
Hatanaka, K
Itahashi, T
Takahisa, K
Tamura, K
Miura, I
机构
[1] OSAKA UNIV,NUCL PHYS RES CTR,IBARAKI,OSAKA 567,JAPAN
[2] TOSHIBA CO LTD,HEAVY APPARATUS ENGN LAB,TSURUMI KU,YOKOHAMA,KANAGAWA 230,JAPAN
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS | 1996年 / 113卷 / 1-4期
关键词
D O I
10.1016/0168-583X(95)01421-7
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Applying a bridged-T type all-pass network to a resonator described as a parallel circuit, the output voltage of the resonator shows a band-pass feature over a certain frequency range, while the input impedance is always constant against frequency. This feature is considered to realize the ferrite-loaded tuning-free rf accelerating cavity. It has several merits such as a simple cavity structure without bias windings, an easy operation without feedback control of the bias current, applying new ferrite with favorable rf characteristics and so on. The accelerating system is applicable to a proton-synchrotron for radio therapy or a cooler-synchrotron for nuclear physics studies in a multi-GeV region. This paper presents a theory of the system, the characteristics of the new ferrite, which is currently developed, and design studies of the network based on preliminary measurements of an equivalent lumped circuit.
引用
收藏
页码:42 / 45
页数:4
相关论文
共 50 条
  • [21] Nonparametric, tuning-free estimation of S-shaped functions
    Feng, Oliver Y.
    Chen, Yining
    Han, Qiyang
    Carroll, Raymond J.
    Samworth, Richard J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (04) : 1324 - 1352
  • [22] TUNING-FREE JOINT SPARSE RECOVERY VIA OPTIMIZATION TRANSFER
    Chunikhina, Evgenia
    Gutshall, Gregory
    Raich, Raviv
    Thinh Nguyen
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 1913 - 1916
  • [23] Optimal Tuning-Free Convex Relaxation for Noisy Matrix Completion
    Yang, Yuepeng
    Ma, Cong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (10) : 6571 - 6585
  • [24] Tuning-free sparse clustering via alternating hard-thresholding
    Dong, Wei
    Xu, Chen
    Xie, Jinhan
    Tang, Niansheng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 203
  • [25] Tuning-free filtering for stochastic systems with unmodeled measurement dynamics
    Zhu, Yanting
    Zhao, Shunyi
    Zhang, Chengxi
    Liu, Fei
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (02): : 933 - 943
  • [26] Instruction Tuning-Free Visual Token Complement for Multimodal LLMs
    Wang, Dongsheng
    Cui, Jiequan
    Li, Miaoge
    Lin, Wang
    Chen, Bo
    Zhang, Hanwang
    COMPUTER VISION - ECCV 2024, PT LXXXI, 2025, 15139 : 446 - 462
  • [27] Autonomous RF Cavity Filter Tuning
    Yigit, Yarkin
    Afacan, Engin
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2023, 26 (05) : 39 - 44
  • [28] Tuning-free method for parameter estimation under varying error characteristics
    Agarwal, Mukul
    Optimal Control Applications and Methods, 20 (04): : 213 - 221
  • [29] Towards Tuning-Free Minimum-Volume Nonnegative Matrix Factorization
    Nguyen, Duc Toan
    Chi, Eric C.
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 217 - 225
  • [30] HONES: A Fast and Tuning-free Homotopy Method For Online Newton Step
    Ye, Yuting
    Ju, Cheng
    Lei, Lihua
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84