Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete

被引:80
|
作者
Song, Weimin [1 ]
Yin, Jian [2 ]
机构
[1] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA
[2] Cent South Univ Forestry & Technol, Sch Civil & Mech Engn, Changsha 410004, Hunan, Peoples R China
关键词
steel fiber; carbon fiber; hybrid fiber reinforced concrete; compressive toughness; impact toughness; hybrid effect; MECHANICAL-PROPERTIES; HIGH-STRENGTH; COMPOSITES;
D O I
10.3390/ma9080704
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Performance of Steel Wool Fiber Reinforced Geopolymer Concrete
    Faris, Meor Ahmad
    Abdullah, Mohd Mustafa Al Bakri
    Ismail, Khairul Nizar
    Muniandy, Ratnasamy
    Ariffin, Nurliayana
    3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017), 2017, 1885
  • [22] Evaluation of maturity method for steel fiber reinforced concrete
    Saeid Kamkar
    Özgür Eren
    KSCE Journal of Civil Engineering, 2018, 22 : 213 - 221
  • [23] Performance of Steel Fiber-Reinforced Concrete Pipes
    Abolmaali, A.
    Mikhaylova, A.
    Wilson, A.
    Lundy, J.
    TRANSPORTATION RESEARCH RECORD, 2012, (2313) : 168 - 177
  • [24] The Effect of Fiber Volume Fraction on Fiber Distribution in Steel Fiber Reinforced Self-Compacting Concrete
    Zhao, Yun
    Bi, Jihong
    Zhou, Junlong
    Liu, Xiaomin
    Li, Xiaopeng
    Geng, Wenbin
    BUILDINGS, 2023, 13 (05)
  • [25] Novel Hybrid Fiber Factor for Hybrid Fiber-Reinforced Concrete
    Chu, S. H.
    Kwan, A. K. H.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2021, 33 (10)
  • [26] FIBER-TYPE EFFECTS ON THE PERFORMANCE OF STEEL FIBER REINFORCED-CONCRETE - CLOSURE
    SOROUSHIAN, P
    BAYASI, Z
    ACI MATERIALS JOURNAL, 1992, 89 (01) : 107 - 107
  • [27] Assessment of Fiber Corrosion Influence in the Flexural Performance of Steel Fiber-Reinforced Concrete
    Fernandes, Mauro
    Neves, Rui
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [28] FIBER-TYPE EFFECTS ON THE PERFORMANCE OF STEEL FIBER REINFORCED-CONCRETE - DISCUSSION
    BANTHIA, N
    TROTTIER, JF
    SOROUSHIAN, P
    BAYASI, Z
    ACI MATERIALS JOURNAL, 1992, 89 (01) : 106 - 107
  • [29] INFLUENCE OF FIBER SHAPE ON THE STRENGTH OF STEEL FIBER REINFORCED CONCRETE
    Salna, Remigijus
    Marciukaitis, Gediminas
    MODERN BUILDING MATERIALS, STRUCTURES AND TECHNIQUES, 10TH INTERNATIONAL CONFERENCE 2010, VOL II, 2010, : 763 - 767
  • [30] Damage and failure mechanisms of hybrid carbon fiber and steel fiber reinforced polymer composites
    Rehra, Jan
    Jungbluth, Julia
    Katri, Bilal
    Schmeer, Sebastian
    Gurka, Martin
    Balle, Frank
    Breuer, Ulf P.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2024, 185