On the distributed stable full information H∞ minimax problem

被引:0
|
作者
Staffans, OJ [1 ]
机构
[1] Abo Akad Univ, Dept Math, FIN-20500 Turku, Finland
关键词
suboptimal H-infinity control; two player zero sum dynamical game; (J; S)-spectral factorization; S)-inner-outer factorization; S)-lossless factorization;
D O I
10.1002/(SICI)1099-1239(19981230)8:15<1255::AID-RNC386>3.0.CO;2-P
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the distributed parameter suboptimal full information Hm problem for a stable well-posed linear system with control u, disturbance w, state x, and output y. Here u, w, and y are L-2-signals on (O, infinity) with values in the Hilbert spaces U, W, and Y, and the state x is a continuous function of time with values in the Hilbert space H. The problem is to determine if there exists a (dynamic) gamma-suboptimal feedforward compensator, i.e., a compensator U such that the choice u = Uw, makes the norm of the input/output map from w to y less than a given constant y. A sufficient condition for the existence of a gamma-suboptimal compensator is that an appropriately extended input/output map of the system has a (J, S)-inner-outer factorization of a special type, and if the control and disturbance spaces are finite-dimensional and the system has an L-1 impulse response, then this condition is also necessary. Moreover, in this case there exists a central state feedback/feedforward controller, which can be used to give a simple parameterization of the set of all gamma-suboptimal compensators. Our proof use a game theory approach. (C) 1998 John Wiley & Sons, Ltd.
引用
收藏
页码:1255 / 1305
页数:51
相关论文
共 50 条
  • [41] A MAXIMUM PRINCIPLE IN A MINIMAX PROBLEM
    ZHELEZNOV, EI
    DIFFERENTIAL EQUATIONS, 1986, 22 (09) : 1041 - 1050
  • [42] NECESSARY CONDITIONS IN MINIMAX PROBLEM
    BOLTYANS.VG
    CHEBOTAR.IS
    DOKLADY AKADEMII NAUK SSSR, 1973, 213 (02): : 257 - 260
  • [43] The minimax cylinder estimation problem
    Radhakrishnan, S
    Ventura, JA
    Ramaswamy, SE
    JOURNAL OF MANUFACTURING SYSTEMS, 1998, 17 (02) : 97 - 106
  • [44] AN ITERATIVE METHOD FOR THE MINIMAX PROBLEM
    祁立群
    孙文瑜
    NumericalMathematicsAJournalofChineseUniversities(EnglishSeries), 1995, (02) : 237 - 239
  • [45] GAME PROBLEM OF MINIMAX CONTROL
    CHENTSOV, AG
    ENGINEERING CYBERNETICS, 1975, 13 (01): : 28 - 35
  • [46] Spherical minimax location problem
    Das, P
    Chakraborti, NR
    Chaudhuri, PK
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2001, 18 (03) : 311 - 326
  • [47] Distributed Minimax Filter for Tracking and Flocking
    Gu, Dongbing
    Hu, Huosheng
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 3562 - 3567
  • [48] Spherical Minimax Location Problem
    P. Das
    N.R. Chakraborti
    P.K. Chaudhuri
    Computational Optimization and Applications, 2001, 18 : 311 - 326
  • [49] ALGORITHMS FOR THE MINIMAX TRANSPORTATION PROBLEM
    AHUJA, RK
    NAVAL RESEARCH LOGISTICS, 1986, 33 (04) : 725 - 739
  • [50] MINIMAX ESTIMATION IN A DECONVOLUTION PROBLEM
    ERMAKOV, MS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (05): : 1273 - 1282