Temporal Dynamics in Information Tables

被引:22
|
作者
Ciucci, Davide [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Informat Sistemist & Comunicaz, I-20126 Milan, Italy
关键词
ROUGH SET; APPROXIMATIONS; CLASSIFICATION; ACQUISITION; KNOWLEDGE;
D O I
10.3233/FI-2012-640
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An information table can change over time in several different ways: objects enter/exit the system, new attributes are considered, etc. As a consequence rough set instruments also change. At first, we recall a classification of dynamic increase of information with respect to three different factors: objects, attributes, values. Then, the corresponding changes in rough sets are discussed. Results about approximations, positive region and generalized decision are given and algorithms to update reducts and rules provided.
引用
收藏
页码:57 / 74
页数:18
相关论文
共 50 条
  • [31] Exploring the Origins of Tables for Information Visualization
    Marchese, Francis T.
    15TH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION (IV 2011), 2011, : 395 - 402
  • [32] INFORMATION MEASURE OF ASSOCIATION IN CONTINGENCY TABLES
    HAMDAN, MA
    TSOKOS, CP
    INFORMATION AND CONTROL, 1971, 19 (02): : 174 - &
  • [33] Analyzing and mining ordered information tables
    Ying Sai
    Y. Y. Yao
    Journal of Computer Science and Technology, 2003, 18 : 771 - 779
  • [34] Mutual information and the encoding of contingency tables
    Jerdee, Maximilian
    Kirkley, Alec
    Newman, M. E. J.
    PHYSICAL REVIEW E, 2024, 110 (06)
  • [35] Analyzing and mining ordered information tables
    Sai, Y
    Yao, YY
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2003, 18 (06) : 771 - 779
  • [36] Incomplete information tables and rough classification
    Stefanowski, J
    Tsoukiàs, A
    COMPUTATIONAL INTELLIGENCE, 2001, 17 (03) : 545 - 566
  • [37] Uncovering the Spatio-Temporal Dynamics of Memes in the Presence of Incomplete Information
    Ge, Hancheng
    Caverlee, James
    Zhang, Nan
    Squicciarini, Anna
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 1493 - 1502
  • [38] DynaSTI: Dynamics modeling with sequential temporal information for reinforcement learning in Atari
    Kim, Jaehoon
    Lee, Young Jae
    Kwak, Mingu
    Park, Young Joon
    Kim, Seoung Bum
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [39] Raman crystallography provides temporal information on bacterial transcription elongation dynamics
    Antonopoulos, Yianna
    Warner, Brittany
    Murakami, Katsuhiko
    Carey, Paul
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [40] On the generation of flight dynamics aerodynamic tables by computational fluid dynamics
    Da Ronch, A.
    Ghoreyshi, M.
    Badcock, K. J.
    PROGRESS IN AEROSPACE SCIENCES, 2011, 47 (08) : 597 - 620