Numerical method for solving constrained non-linear optimal control using the block pulse functions (BPFs)

被引:0
|
作者
Boussiala, Noureddine [1 ]
Chaabi, Hafid
Liu, Wenyuan [2 ]
机构
[1] Skikda Univ Algeria, Dept Electrotech, Skikda, Algeria
[2] Yanshan Univ, Sch Comp Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
关键词
optimal control; block pulse functions; non-linear system;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the block pulse functions (BPFs) are used to solve linear and non-linear optimal control problems subject to terminal state constraints and saturation constraints on control. Based on BPFs, the optimal control problem is transformed to a non-linear programming problem. The resulting non-linear programming problem is solved using SNOPT which is interfaced through MATLAB via an optimization tool called TOMLAB. Concrete examples are studied where the simulation results show the efficiency of this method.
引用
收藏
页码:1733 / 1740
页数:8
相关论文
共 50 条
  • [31] Local Convergence of an Optimal Method of Order Four for Solving Non-Linear System
    John J.A.
    Jayaraman J.
    Argyros I.K.
    International Journal of Applied and Computational Mathematics, 2022, 8 (4)
  • [32] A NUMERICAL-METHOD OF SOLVING SYSTEMS OF NON-LINEAR EQUATIONS BY CURVILINEAR DESCENT
    REDKOVSKII, NN
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1983, 23 (02): : 2 - 5
  • [33] MODIFIED NUMERICAL-METHOD FOR SOLVING THE NON-LINEAR MIXER PUMPING PROBLEM
    SCHUPPERT, B
    ELECTRONICS LETTERS, 1983, 19 (02) : 50 - 52
  • [34] Optimal non-linear robust control for non-linear uncertain systems
    Haddad, WM
    Chellaboina, V
    Fausz, JL
    Leonessa, A
    INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (04) : 329 - 342
  • [35] Using Galerkin Method for Solving Linear Optimal Control Problems
    Liverovskiy, D., I
    Shevirev, S. P.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2014, 14 (03): : 340 - 349
  • [36] Solving non-linear Lane–Emden type equations using Bessel orthogonal functions collocation method
    Kourosh Parand
    Mehran Nikarya
    Jamal Amani Rad
    Celestial Mechanics and Dynamical Astronomy, 2013, 116 : 97 - 107
  • [37] Numerical solution of optimal control problem of the non-linear Volterra integral equations via generalized hat functions
    Mirzaee, Farshid
    Hadadiyan, Elham
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2017, 34 (03) : 889 - 904
  • [38] A NUMERICAL TECHNIQUE FOR SOLVING NON-LINEAR ELLIPTIC PROBLEMS
    JAIN, PC
    KADALBAJOO, MK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1980, 11 (01): : 20 - 32
  • [39] New numerical techniques for solving non-linear equations
    Kanwar, V
    Singh, S
    Sharma, JR
    Mamta
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (09): : 1339 - 1349
  • [40] A METHOD OF SOLVING NON-LINEAR FUNCTIONAL EQUATIONS
    KURCHATO.VA
    DOKLADY AKADEMII NAUK SSSR, 1969, 189 (02): : 247 - &