On the classification of four-dimensional gradient Ricci solitons

被引:2
|
作者
Yang, Fei [1 ]
Zhang, Liangdi [2 ,3 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
[2] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
[3] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
Classification; Four dimension; Gradient Ricci solitons; Divergence -free curvature; ROTATIONAL SYMMETRY; RIGIDITY;
D O I
10.1016/j.difgeo.2022.101936
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove some classification results for four-dimensional gradient Ricci solitons. For a four-dimensional gradient shrinking Ricci soliton with div4Rm +/- = 0, we show that it is either Einstein or a finite quotient of R4, S2 x R2 or S3 x R. The same result can be obtained under the condition of div4W +/- = 0. We also present some classification results of four-dimensional complete non-compact gradient expanding Ricci soliton with non-negative Ricci curvature and gradient steady Ricci solitons under certain curvature conditions. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Ricci solitons and gradient Ricci solitons in three-dimensional trans-Sasakian manifolds
    Turana, Mine
    De, Uday Chand
    Yildiz, Ahmet
    FILOMAT, 2012, 26 (02) : 363 - 370
  • [42] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [43] Two-Dimensional Gradient Ricci Solitons Revisited
    Bernstein, Jacob
    Mettler, Thomas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (01) : 78 - 98
  • [44] On Gradient Ricci Solitons
    Munteanu, Ovidiu
    Sesum, Natasa
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 539 - 561
  • [45] On Gradient Ricci Solitons
    Ovidiu Munteanu
    Natasa Sesum
    Journal of Geometric Analysis, 2013, 23 : 539 - 561
  • [46] Four-dimensional generalized Ricci flows with nilpotent symmetry
    Gindi, Steven
    Streets, Jeffrey
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (07)
  • [47] Ricci solitons and gradient Ricci solitons on 3-dimensional normal almost contact metric manifolds
    De, Uday Chand
    Turan, Mine
    Yildiz, Ahmet
    De, Avik
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (1-2): : 127 - 142
  • [48] Classification of gradient steady Ricci solitons with linear curvature decay
    Yuxing Deng
    Xiaohua Zhu
    Science China(Mathematics), 2020, 63 (01) : 135 - 154
  • [49] Classification of gradient steady Ricci solitons with linear curvature decay
    Yuxing Deng
    Xiaohua Zhu
    Science China Mathematics, 2020, 63 : 135 - 154
  • [50] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458