PHASE TRANSITIONS IN THE DYNAMIC MODE DECOMPOSITION ALGORITHM

被引:0
|
作者
Prasadan, Arvind [1 ]
Lodhia, Asad [2 ]
Nadakuditi, Raj Rao [1 ]
机构
[1] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019) | 2019年
关键词
Dynamic Mode Decomposition; Singular Value Decomposition; Random Matrix Theory; Source Separation; Time Series; SPECTRAL-ANALYSIS; APPROXIMATION; MATRIX;
D O I
10.1109/camsap45676.2019.9022604
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We analyze the Dynamic Mode Decomposition (DMD) algorithm in the noisy data setting. Previous work has shown that DMD is a source separation algorithm in disguise, i.e., that it is capable of unmixing linearly mixed time series. In this work, we analyze the performance of DMD when the mixed time series are corrupted by noise. We demonstrate that a pre-processing step of the truncated SVD before applying DMD yields significant benefits, and quantify the performance of the truncated-SVD-plus-DMD (tSVD-DMD) algorithm using tools from random matrix theory. We validate our findings with numerical simulations.
引用
收藏
页码:396 / 400
页数:5
相关论文
共 50 条
  • [21] Challenges in dynamic mode decomposition
    Wu, Ziyou
    Brunton, Steven L.
    Revzen, Shai
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2021, 18 (185)
  • [22] Robust Dynamic Mode Decomposition
    Abolmasoumi, Amir Hossein
    Netto, Marcos
    Mili, Lamine
    IEEE ACCESS, 2022, 10 : 65473 - 65484
  • [23] Constrained Dynamic Mode Decomposition
    Krake T.
    Klotzl D.
    Eberhardt B.
    Weiskopf D.
    IEEE Trans Visual Comput Graphics, 2023, 1 (182-192): : 182 - 192
  • [24] Randomized Dynamic Mode Decomposition
    Erichson, N. Benjamin
    Mathelin, Ionel
    Kutz, J. Nathan
    Brunton, Steven L.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (04): : 1867 - 1891
  • [25] Bayesian Dynamic Mode Decomposition
    Takeishi, Naoya
    Kawahara, Yoshinobu
    Tabei, Yasuo
    Yairi, Takehisa
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2814 - 2821
  • [26] Output Dynamic Mode Decomposition: An extension of Dynamic Mode Decomposition based on output functional expansions
    Runolfsson, Thordur
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 7148 - 7152
  • [27] Detection of Flow-Regime Transitions Using Dynamic Mode Decomposition and Moving Horizon Estimation
    Alessandri, Angelo
    Bagnerini, Patrizia
    Gaggero, Mauro
    Lengani, Davide
    Simoni, Daniele
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (03) : 1324 - 1331
  • [28] Phase Extraction in Dynamic Speckle Interferometry with Empirical Mode Decomposition and Hilbert Transform
    Equis, S.
    Jacquot, P.
    STRAIN, 2010, 46 (06) : 550 - 558
  • [29] Phase Analysis of Event-Related Potentials Based on Dynamic Mode Decomposition
    Li, Li
    Luo, Jingjing
    Li, Yang
    Zhang, Lei
    Guo, Yuzhu
    MATHEMATICS, 2022, 10 (23)
  • [30] Temporal phase retrieval in dynamic speckle interferometry by adaptive emperical mode decomposition
    Zhang, Hao
    He, Jin
    Zhu, Meng
    Huang, Zhanhua
    OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS II, 2012, 8563