PHASE TRANSITIONS IN THE DYNAMIC MODE DECOMPOSITION ALGORITHM

被引:0
|
作者
Prasadan, Arvind [1 ]
Lodhia, Asad [2 ]
Nadakuditi, Raj Rao [1 ]
机构
[1] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019) | 2019年
关键词
Dynamic Mode Decomposition; Singular Value Decomposition; Random Matrix Theory; Source Separation; Time Series; SPECTRAL-ANALYSIS; APPROXIMATION; MATRIX;
D O I
10.1109/camsap45676.2019.9022604
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We analyze the Dynamic Mode Decomposition (DMD) algorithm in the noisy data setting. Previous work has shown that DMD is a source separation algorithm in disguise, i.e., that it is capable of unmixing linearly mixed time series. In this work, we analyze the performance of DMD when the mixed time series are corrupted by noise. We demonstrate that a pre-processing step of the truncated SVD before applying DMD yields significant benefits, and quantify the performance of the truncated-SVD-plus-DMD (tSVD-DMD) algorithm using tools from random matrix theory. We validate our findings with numerical simulations.
引用
收藏
页码:396 / 400
页数:5
相关论文
共 50 条
  • [1] Detecting Regime Transitions in Time Series Using Dynamic Mode Decomposition
    Gottwald, Georg A.
    Gugole, Federica
    JOURNAL OF STATISTICAL PHYSICS, 2020, 179 (5-6) : 1028 - 1045
  • [2] Detecting Regime Transitions in Time Series Using Dynamic Mode Decomposition
    Georg A. Gottwald
    Federica Gugole
    Journal of Statistical Physics, 2020, 179 : 1028 - 1045
  • [3] Regularized dynamic mode decomposition algorithm for time sequence predictions
    Xiaoyang Xie
    Shaoqiang Tang
    Theoretical & Applied Mechanics Letters, 2024, 14 (05) : 395 - 401
  • [4] Regularized dynamic mode decomposition algorithm for time sequence predictions
    Xie, Xiaoyang
    Tang, Shaoqiang
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2024, 14 (05)
  • [5] Dynamic mode decomposition-based algorithm for phase-shifting interferometry in the presence of miscalibration and vibration
    Kulkarni, Rishikesh
    Kalibhat, Raghunandan
    OPTICS AND PHOTONICS FOR ADVANCED DIMENSIONAL METROLOGY III, 2024, 12997
  • [6] Phase-shifting interferometry based on dynamic mode decomposition
    Kulkarni, Rishikesh
    APPLIED OPTICS, 2023, 62 (12) : 3197 - 3201
  • [7] A Numerically Stable Dynamic Mode Decomposition Algorithm for Nearly Defective Systems
    Thitsa, Makhin
    Clouatre, Maison
    Verriest, Erik
    Coogan, Samuel
    Martin, Clyde
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (01): : 67 - 72
  • [8] Eigenfunctions of Galactic phase space spirals from dynamic mode decomposition
    Darling, Keir
    Widrow, Lawrence M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (01) : 114 - 123
  • [9] Singular Dynamic Mode Decomposition
    Rosenfeld, Joel A.
    Kamalapurkar, Rushikesh
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03): : 2357 - 2381
  • [10] Multiresolution Dynamic Mode Decomposition
    Kutz, J. Nathan
    Fu, Xing
    Brunton, Steven L.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (02): : 713 - 735