Annual cycles of pCO2sw in the southeastern Beaufort Sea: New understandings of air-sea CO2 exchange in arctic polynya regions

被引:35
|
作者
Else, B. G. T. [1 ]
Papakyriakou, T. N. [1 ]
Galley, R. J. [1 ]
Mucci, A. [2 ]
Gosselin, M. [3 ]
Miller, L. A. [4 ]
Shadwick, E. H. [5 ]
Thomas, H. [5 ]
机构
[1] Univ Manitoba, Ctr Earth Observat Sci, Dept Geog & Environm, Winnipeg, MB R3T 2N2, Canada
[2] McGill Univ, Dept Earth & Planetary Sci, Geotop, Montreal, PQ H2A 3A7, Canada
[3] Univ Quebec, ISMER, Rimouski, PQ G5L 3A1, Canada
[4] Fisheries & Oceans Canada, Inst Ocean Sci, Sidney, BC V8L 482, Canada
[5] Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4J1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
NORTHEAST WATER POLYNYA; CANADIAN SHELF; CARBONIC-ACID; CAPE BATHURST; OCEAN; ICE; PHYTOPLANKTON; NUTRIENTS; DISTRIBUTIONS; DISSOCIATION;
D O I
10.1029/2011JC007346
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
From 23 October 2007 to 1 August 2008, we made continuous measurements of sea surface partial pressure of CO2 (pCO(2sw)) in three regions of the southeastern Beaufort Sea (Canada): the Amundsen Gulf, the Banks Island Shelf, and the Mackenzie Shelf. All three regions are seasonally ice covered, with mobile winter ice and an early spring opening that defines them as polynya regions. Amundsen Gulf was characterized by undersaturated pCO(2sw) (with respect to the atmosphere) in the late fall, followed by an under-ice increase to near saturation in winter, a return to undersaturation during the spring, and an increase to near saturation in summer. The Banks Island Shelf acted similarly, while the Mackenzie Shelf experienced high supersaturation in the fall, followed by a spring undersaturation and a complex, spatially heterogeneous summer season. None of these patterns are similar to the annual cycle described or proposed for other Arctic polynya regions. We hypothesize that the discrepancy reflects the influence of several previously unconsidered processes including fall phytoplankton blooms, upwelling, winter air-sea gas exchange, the continental shelf pump, spring nutrient limitation, summer surface warming, horizontal advection, and riverine input. In order to properly predict current and future rates of air-sea CO2 exchange in such regions, these processes must be considered on a location-by-location basis.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Underestimation of surface pCO2 and air-sea CO2 fluxes due to freshwater stratification in an Arctic shelf sea, Hudson Bay
    Ahmed, Mohamed M. M.
    Else, Brent G. T.
    Capelle, David
    Miller, Lisa A.
    Papakyriakou, Tim
    ELEMENTA-SCIENCE OF THE ANTHROPOCENE, 2020, 8 (01):
  • [22] On physical mechanisms enhancing air-sea CO2 exchange
    Gutierrez-Loza, Lucia
    Nilsson, Erik
    Wallin, Marcus B.
    Sahlee, Erik
    Rutgersson, Anna
    BIOGEOSCIENCES, 2022, 19 (24) : 5645 - 5665
  • [23] Temporal and spatial variations of oceanic pCO2 and air-sea CO2 flux in the Greenland Sea and the Barents Sea
    Nakaoka, S
    Aiki, S
    Nakazawa, T
    Hashida, G
    Morimoto, S
    Yamanouchi, T
    Yoshikawa-Inoue, H
    TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2006, 58 (02): : 148 - 161
  • [24] Surface partial pressure of CO2 and air-sea exchange in the northern Yellow Sea
    Xue, Liang
    Xue, Ming
    Zhang, Longjun
    Sun, Tongmei
    Guo, Zhao
    Wang, Jingjing
    JOURNAL OF MARINE SYSTEMS, 2012, 105 : 194 - 206
  • [25] Regional differences in seasonal variation of air-sea CO2 exchange in the Yellow Sea
    Wang, Song-yin
    Zhai, Wei-dong
    CONTINENTAL SHELF RESEARCH, 2021, 218
  • [26] Atmospheric CO2 variation over the Baltic Sea and the impact on air-sea exchange
    Rutgersson, Anna
    Norman, Maria
    Astrom, Gustav
    BOREAL ENVIRONMENT RESEARCH, 2009, 14 (01): : 238 - 249
  • [27] Autocorrelation characteristics of surface ocean pCO2 and air-sea CO2 fluxes
    Jones, S. D.
    Le Quere, C.
    Roedenbeck, C.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2012, 26
  • [28] Impact of Sea Ice Melting on Summer Air-Sea CO2 Exchange in the East Siberian Sea
    Mo, Ahra
    Yang, Eun Jin
    Kang, Sung-Ho
    Kim, Dongseon
    Lee, Kitack
    Ko, Young Ho
    Kim, Kitae
    Kim, Tae-Wook
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [29] Air-sea CO2 fluxes on the Bering Sea shelf
    Bates, N. R.
    Mathis, J. T.
    Jeffries, M. A.
    BIOGEOSCIENCES, 2011, 8 (05) : 1237 - 1253
  • [30] Note on the CO2 air-sea gas exchange at high temperatures
    Groeger, Matthias
    Mikolajewicz, Uwe
    OCEAN MODELLING, 2011, 39 (3-4) : 284 - 290