A mm-Sized Wireless Implantable Device for Electrical Stimulation of Peripheral Nerves

被引:159
|
作者
Charthad, Jayant [1 ]
Chang, Ting Chia [1 ]
Liu, Zhaokai [2 ,3 ]
Sawaby, Ahmed [1 ]
Weber, Marcus J. [1 ]
Baker, Sam [4 ]
Gore, Felicity [5 ]
Felt, Stephen A. [4 ]
Arbabian, Amin [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Stanford, CA 94305 USA
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[4] Stanford Univ, Dept Comparat Med, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Electrical stimulation; electroceuticals; electrode characterization; EMG; high compliance voltage; implantable medical devices (IMD); optogenetics; peripheral nerve; sciatic nerve; ELECTRODE-STIMULATOR; NEURAL STIMULATION; POWER TRANSFER; ULTRASOUND; EFFICIENT; SYSTEM; RECRUITMENT; CIRCUITS; DESIGN; BRAIN;
D O I
10.1109/TBCAS.2018.2799623
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A wireless electrical stimulation implant for peripheral nerves, achieving > 10x improvement over state of the art in the depth/volume figure of merit, is presented. The fully integrated implant measures just 2 mm x 3 mm x 6.5 mm (39 mm(3), 78 mg), and operates at a large depth of 10.5 cm in a tissue phantom. The implant is powered using ultrasound and includes a miniaturized piezoelectric receiver (piezo), an IC designed in 180 nm HV BCD process, an off-chip energy storage capacitor, and platinum stimulation electrodes. The package also includes an optional blue light-emitting diode for potential applications in optogenetic stimulation in the future. A system-level design strategy for complete operation of the implant during the charging transient of the storage capacitor, as well as a unique downlink command/data transfer protocol, is presented. The implant enables externally programmable current-controlled stimulation of peripheral nerves, with a wide range of stimulation parameters, both for electrical (22 to 5000 mu A amplitude, similar to 14 to 470 mu s pulse-width, 0 to 60 Hz repetition rate) and optical (up to 23 mW/mm(2) optical intensity) stimulation. Additionally, the implant achieves 15 V compliance voltage for chronic applications. Full integration of the implant components, end-to-end in vitro system characterizations, and results for the electrical stimulation of a sciatic nerve, demonstrate the feasibility and efficacy of the proposed stimulator for peripheral nerves.
引用
收藏
页码:257 / 270
页数:14
相关论文
共 50 条
  • [21] ELECTRICAL INTRANEURAL BIPOLAR STIMULATION OF PERIPHERAL NERVES IN THE DOG
    ALLAM, MW
    NULSEN, FE
    LEWEY, FH
    JOURNAL OF THE AMERICAN VETERINARY MEDICAL ASSOCIATION, 1949, 114 (863) : 87 - 89
  • [22] Towards a Wireless System that Can Monitor the Encapsulation of mm-sized Active Implants in vivo for Bioelectronic Medicine
    Rodrigues, Goncalo
    Neca, Mariana
    Silva, Joao
    Brito, Diogo
    Rabuske, Taimur
    Fernandes, Jorge
    Mohrlok, Rainer
    Jeschke, Christoph
    Meents, Jannis
    Nanbakhsh, Kambiz
    Giagka, Vasiliki
    2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2021, : 981 - 984
  • [23] A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves
    Chen, Joshua C.
    Kan, Peter
    Yu, Zhanghao
    Alrashdan, Fatima
    Garcia, Roberto
    Singer, Amanda
    Lai, C. S. Edwin
    Avants, Ben
    Crosby, Scott
    Li, Zhongxi
    Wang, Boshuo
    Felicella, Michelle M.
    Robledo, Ariadna
    Peterchev, Angel, V
    Goetz, Stefan M.
    Hartgerink, Jeffrey D.
    Sheth, Sunil A.
    Yang, Kaiyuan
    Robinson, Jacob T.
    NATURE BIOMEDICAL ENGINEERING, 2022, 6 (06) : 706 - 716
  • [24] A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves
    Joshua C. Chen
    Peter Kan
    Zhanghao Yu
    Fatima Alrashdan
    Roberto Garcia
    Amanda Singer
    C. S. Edwin Lai
    Ben Avants
    Scott Crosby
    Zhongxi Li
    Boshuo Wang
    Michelle M. Felicella
    Ariadna Robledo
    Angel V. Peterchev
    Stefan M. Goetz
    Jeffrey D. Hartgerink
    Sunil A. Sheth
    Kaiyuan Yang
    Jacob T. Robinson
    Nature Biomedical Engineering, 2022, 6 : 706 - 716
  • [25] An Implantable Wireless Optogenetic Stimulation System for Peripheral Nerve Control
    Song, Kang-Il
    Park, Sunghee E.
    Kim, Myoung-Soo
    Joo, Chulmin
    Kim, Yong-Jun
    Suh, Jun-Kyo F.
    Hwang, Dosik
    Youn, Inchan
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 1033 - 1036
  • [26] Electrical Interaction between Implantable Vagus Nerve Stimulation Device and Implantable Cardiac Rhythm Management Device
    Libbus, Imad
    Mazar, Scott T.
    Stubbs, Scott R.
    KenKnight, Bruce H.
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 3681 - 3684
  • [27] RESPIRATORY AND VASOMOTOR RESPONSES TO ELECTRICAL STIMULATION OF PERIPHERAL AFFERENT NERVES
    KATZ, S
    PERRYMAN, JH
    FEDERATION PROCEEDINGS, 1963, 22 (02) : 337 - &
  • [28] ELECTRICAL-STIMULATION OF PERIPHERAL-NERVES FOR RELIEF OF PAIN
    NASHOLD, BS
    GOLDNER, JL
    FREEDMAN, H
    JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1974, A 56 (07): : 1540 - 1540
  • [29] Restoration of somatosensory perception via electrical stimulation of peripheral nerves
    Ortiz-Catalan, Max
    CLINICAL NEUROPHYSIOLOGY, 2018, 129 (04) : 845 - 846
  • [30] A COMPARISON OF MAGNETIC AND ELECTRICAL-STIMULATION OF PERIPHERAL-NERVES
    OLNEY, RK
    SO, YT
    GOODIN, DS
    AMINOFF, MJ
    MUSCLE & NERVE, 1990, 13 (10) : 957 - 963