Faceted crack initiation characteristics for high-cycle and very-high-cycle fatigue of a titanium alloy under different stress ratios

被引:86
|
作者
Liu, Xiaolong [1 ]
Sun, Chengqi [1 ]
Hong, Youshi [1 ]
机构
[1] Chinese Acad Sci, Inst Mech, LNM, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Ti-6Al-4V alloy; Faceted crack initiation; Very-high-cycle fatigue; Stress ratio; Cluster of primary alpha grains; COMPETING FAILURE MODES; TI-6AL-4V; STRENGTH; BEHAVIOR; DUALITY; SURFACE; MICROSTRUCTURE; CURVES; GROWTH; STEEL;
D O I
10.1016/j.ijfatigue.2016.03.013
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Ultrasonic fatigue tests were conducted at the stress ratios of -1, -0.5, -0.1, 0.1 and 0.5 for a Ti-6Al-4V alloy in high-cycle and very-high-cycle fatigue regimes. Experimental results showed that faceted crack initiation was the main failure mode for specimens at the stress ratios of 0.1, 0.1 and 0.5, and multi-site faceted crack initiation was observed at the stress ratios of 0.1 and 0.5. The measurements indicated that the number of facets increased with the increase of stress ratio. Based on the observations, the mechanism of faceted crack initiation was proposed, i.e., (i) cleavage of isolated primary alpha grains in cluster; (ii) gradual growth of originated cracks (facets), and the coalescence of adjacent facets; and (iii) coalesced facets forming a main crack in the cluster. Moreover, a model based on Poisson defect distribution is proposed to describe the effects of stress ratio on faceted crack initiation, which is in agreement with the experimental results. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:434 / 441
页数:8
相关论文
共 50 条
  • [21] Subsurface crack nucleation and growth behavior and energy-based life prediction of a titanium alloy in high-cycle and very-high-cycle regimes
    Li, Wei
    Xing, Xinxin
    Gao, Ning
    Wang, Ping
    ENGINEERING FRACTURE MECHANICS, 2019, 221
  • [22] Effects of stress ratio on high-cycle and very-high-cycle fatigue behavior of a Ti-6Al-4V alloy
    Liu, Xiaolong
    Sun, Chengqi
    Hong, Youshi
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 622 : 228 - 235
  • [23] Mechanisms of interior crack initiation in very-high-cycle fatigue of high-strength alloys
    Liu, Xiaolong
    Chen, Erqing
    Zeng, Fan
    Cong, Tao
    Domblesky, Joseph P.
    ENGINEERING FRACTURE MECHANICS, 2019, 212 : 153 - 163
  • [24] Very-high-cycle fatigue crack initiation and propagation behaviours of magnesium alloy ZK60
    He, Chao
    Liu, Yongjie
    Li, Jiukai
    Yang, Kun
    Wang, Qingyuan
    Chen, Qiang
    MATERIALS SCIENCE AND TECHNOLOGY, 2018, 34 (06) : 639 - 647
  • [25] An experimental investigation of fatigue performance and crack initiation characteristics for an SLMed Ti-6Al-4V under different stress ratios up to very-high-cycle regime
    Fu, Rui
    Zheng, Liang
    Ling, Chao
    Zhong, Zheng
    Hong, Youshi
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 164
  • [26] EFFECTS OF MICROSTRUCTURE AND STRESS RATIO ON HIGH-CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY
    Liu Xiaolong
    Sun Chengqi
    Zhou Yantian
    Hong Youshi
    ACTA METALLURGICA SINICA, 2016, 52 (08) : 923 - 930
  • [27] Effects of specimen size on fatigue life of metallic materials in high-cycle and very-high-cycle fatigue regimes
    Sun, C.
    Zhang, X.
    Liu, X.
    Hong, Y.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2016, 39 (06) : 770 - 779
  • [28] Distribution of internal crack initiation sites in high-cycle fatigue for titanium alloys
    Yokoyama, H
    Umezawa, O
    Nagai, K
    Suzuki, T
    ISIJ INTERNATIONAL, 1997, 37 (12) : 1237 - 1244
  • [29] Pore-based prediction of crack initiation life in very-high-cycle fatigue
    Zhang, Ningyu
    Liu, Wenqi
    Shi, Tao
    Sun, Jingyu
    Qian, Guian
    INTERNATIONAL JOURNAL OF FATIGUE, 2025, 190
  • [30] Method to estimate the fatigue-strength scatter of shafts in the high-cycle and very-high-cycle fatigue regimes
    Vetter, Sebastian
    Leidich, Erhard
    Hasse, Alexander
    ENGINEERING FAILURE ANALYSIS, 2023, 143