NiCoFeP Nanofibers as an Efficient Electrocatalyst for Oxygen Evolution Reaction and Zinc-Air Batteries

被引:21
|
作者
Bian, Juanjuan [1 ,2 ]
Sun, Chunwen [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[3] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
NiCoFeP nanofibers; oxygen evolution reactions; phosphating treatment; zinc-air batteries; BIFUNCTIONAL CATALYST; HIGHLY EFFICIENT; NANOPARTICLES; ELECTROLYTE; PEROVSKITE; OER;
D O I
10.1002/aesr.202000104
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The development of high-performance and low-cost bifunctional electrocatalysts is still challenging for solving current energy and environmental problems. However, most electrocatalysts require complex synthesis processes, which prohibit mass production. Herein, NiCoFeP nanofibers are synthesized by phosphating the electrospun Ni,Co precursor nanofibers and subsequent displacement reaction of Ni and Fe3+ via impregnation of Fe(NO3)(3) solution. The obtained NiCoFeP nanofibers catalyst possesses high intrinsic activity, abundant active sites, and superior kinetics, which shows excellent oxygen evolution reaction (OER) performance with low overpotential of 0.309V at 50mAcm(-2) in 1 m KOH solution. It also exhibits a long-term cycling performance for 200h at 10mAcm(-2) as the cathode for zinc-air battery. Furthermore, it is demonstrated that this displacement reaction method is also suitable for preparing other catalysts NiMnP and NiCuP to enhance their OER performance. This work presents a novel approach for the fabrication of multimetallic catalysts for electrocatalysis.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A pair of metal organic framework (MOF)-derived oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts for zinc-air batteries
    Agarwal, Soham
    Yu, Xingwen
    Manthiram, Arumugam
    MATERIALS TODAY ENERGY, 2020, 16
  • [42] Silver Decorated Reduced Graphene Oxide as Electrocatalyst for Zinc-Air Batteries
    Poolnapol, Laksanaporn
    Kao-ian, Wathanyu
    Somwangthanaroj, Anongnat
    Mahlendorf, Falko
    Mai Thanh Nguyen
    Yonezawa, Tetsu
    Kheawhom, Soorathep
    ENERGIES, 2020, 13 (02)
  • [43] Potassium Cobalt Pyrophosphate as a Nonprecious Bifunctional Electrocatalyst for Zinc-Air Batteries
    Sada, Krishnakanth
    Gond, Ritambhara
    Bothra, Neha
    Pati, Swapan K.
    Barpanda, Prabeer
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (07) : 8992 - 9001
  • [44] Fe-MOF-Derived Efficient ORR/OER Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries
    Li, Yun-Wu
    Zhang, Wen-Jie
    Li, Jing
    Ma, Hui-Yan
    Du, Hong-Mei
    Li, Da-Cheng
    Wang, Su-Na
    Zhao, Jin-Sheng
    Dou, Jian-Min
    Xu, Liqiang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 44710 - 44719
  • [45] Three-dimensionally ordered mesoporous trimetal sulfide as efficient electrocatalyst for rechargeable zinc-air batteries
    Li, Jing
    Wan, Tongtao
    Li, Jingde
    Zhang, Zisheng
    Wang, Yanji
    Liu, Guihua
    APPLIED SURFACE SCIENCE, 2022, 575
  • [46] Mn-doped cobalt oxide dodecahedron nanocages as an efficient bifunctional electrocatalyst for zinc-air batteries
    Terlapu, Sai Vani
    Bauri, Ranjit
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (22): : 5195 - 5205
  • [47] A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional Electrocatalyst for Zinc-Air Batteries
    Lu, Qian
    Zou, Xiaohong
    Bu, Yunfei
    Liao, Kaiming
    Zhou, Wei
    Shao, Zongping
    SMALL, 2022, 18 (04)
  • [48] Ultrafine cobalt nitride nanoparticles supported on carbon nanotubes as efficient electrocatalyst for rechargeable zinc-air batteries
    Xu, Ruizhi
    Luo, Fang
    Li, Min
    Yang, Zehui
    CHEMICAL COMMUNICATIONS, 2019, 55 (89) : 13394 - 13397
  • [49] LaNiO3 modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc-air batteries
    Li, Pengzhang
    Tian, Chuanjin
    Yang, Wei
    Zhao, Wenyan
    Lu, Zhe
    FRONTIERS OF MATERIALS SCIENCE, 2019, 13 (03) : 277 - 287
  • [50] A channel-confined strategy for synthesizing CoN-CoOx/C as efficient oxygen reduction electrocatalyst for advanced zinc-air batteries
    Xingmei Guo
    Wei Zhang
    Jing Shi
    Mengting Duan
    Shanjing Liu
    Junhao Zhang
    Yuanjun Liu
    Shenglin Xiong
    Qinghong Kong
    Nano Research, 2022, 15 : 2092 - 2103